Metric space method for constructing splitting partitions of graphs

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
S. Szabó
{"title":"Metric space method for constructing splitting partitions of graphs","authors":"S. Szabó","doi":"10.2478/ausi-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract In an earlier work [6] the concept of splitting partition of a graph was introduced in connection with the maximum clique problem. A splitting partition of a graph can be used to replace the graph by two smaller graphs in the course of a clique search algorithm. In other words splitting partitions can serve as a branching rule in an algorithm to compute the clique number of a given graph. In the paper we revisit this branching idea. We will describe a technique to construct not necessary optimal splitting partitions. The given graph can be viewed as a metric space and the geometry of this space plays a guiding role. In order to assess the performance of the procedure we carried out numerical experiments.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"4 1","pages":"131 - 141"},"PeriodicalIF":0.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In an earlier work [6] the concept of splitting partition of a graph was introduced in connection with the maximum clique problem. A splitting partition of a graph can be used to replace the graph by two smaller graphs in the course of a clique search algorithm. In other words splitting partitions can serve as a branching rule in an algorithm to compute the clique number of a given graph. In the paper we revisit this branching idea. We will describe a technique to construct not necessary optimal splitting partitions. The given graph can be viewed as a metric space and the geometry of this space plays a guiding role. In order to assess the performance of the procedure we carried out numerical experiments.
构造图分割分区的度量空间方法
在较早的工作[6]中,针对最大团问题引入了图的分割概念。在团搜索算法中,图的分裂分割可以用来用两个更小的图来代替图。换句话说,分割分区可以作为算法中的分支规则来计算给定图的团数。在本文中,我们重新审视了这个分支思想。我们将描述一种构造不必要的最优分割分区的技术。给定的图可以看作是一个度量空间,这个空间的几何形状起着指导作用。为了评估该程序的性能,我们进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信