{"title":"Comparative Analysis of 13,14C Induced Reactions on 232Th Target","authors":"M. Kaur, BirBikram Singh, M. Sharma","doi":"10.15415/jnp.2021.91009","DOIUrl":null,"url":null,"abstract":"We have investigated the pairing and magicity effect in context of a comparative study of 13,14C induced reactions on 232Th target at energies in the vicinity of Coulomb barrier. The fission distribution and related properties are explored in terms of the summed-up preformation probabilities. The barrierpenetrability is found to be higher for fragments emitted from 246Cm* formed in 14C+232Th reaction than those emitted in the fission of 245Cm*, leading to higher magnitude of cross-section for earlier case. The DCM calculated fusion-fission cross-sections using ΔR=0 fm are normalised to compare with the available experimental data. The calculations are done for spherical shape of fragments and it will be of further interest to explore the fission mass distribution after the inclusion of deformations.","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/jnp.2021.91009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have investigated the pairing and magicity effect in context of a comparative study of 13,14C induced reactions on 232Th target at energies in the vicinity of Coulomb barrier. The fission distribution and related properties are explored in terms of the summed-up preformation probabilities. The barrierpenetrability is found to be higher for fragments emitted from 246Cm* formed in 14C+232Th reaction than those emitted in the fission of 245Cm*, leading to higher magnitude of cross-section for earlier case. The DCM calculated fusion-fission cross-sections using ΔR=0 fm are normalised to compare with the available experimental data. The calculations are done for spherical shape of fragments and it will be of further interest to explore the fission mass distribution after the inclusion of deformations.