Bayesian analysis of seasonally cointegrated VAR models

IF 2.5 Q2 ECONOMICS
Justyna Wróblewska
{"title":"Bayesian analysis of seasonally cointegrated VAR models","authors":"Justyna Wróblewska","doi":"10.1016/j.ecosta.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>The aim is to develop a Bayesian seasonally cointegrated model for quarterly data. Relevant prior structure is proposed, and the set of full conditional posterior distributions is derived, enabling us to employ the Gibbs sampler for posterior inference. The identification of cointegrating spaces is obtained by orthonormality restrictions imposed on vectors spanning them. The point estimation of the cointegrating spaces is also discussed. In the presence of a seasonal pattern with one cycle per year, the cointegrating vectors belong to the complex space, which should be taken into account in the identification scheme. The methodology is illustrated by the analysis of money and prices in the Polish economy.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"35 ","pages":"Pages 55-70"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306223000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim is to develop a Bayesian seasonally cointegrated model for quarterly data. Relevant prior structure is proposed, and the set of full conditional posterior distributions is derived, enabling us to employ the Gibbs sampler for posterior inference. The identification of cointegrating spaces is obtained by orthonormality restrictions imposed on vectors spanning them. The point estimation of the cointegrating spaces is also discussed. In the presence of a seasonal pattern with one cycle per year, the cointegrating vectors belong to the complex space, which should be taken into account in the identification scheme. The methodology is illustrated by the analysis of money and prices in the Polish economy.
季节协整VAR模型的贝叶斯分析
目的是为季度数据开发贝叶斯季节性协整模型。提出了相应的先验结构,并推导了完整条件后验分布集,使我们能够使用Gibbs采样器进行后验推理。协整空间的辨识是通过对生成它们的向量施加正交性限制来实现的。讨论了协整空间的点估计问题。当存在一年一个周期的季节性模式时,协整向量属于复空间,在识别方案中应考虑到这一点。对波兰经济中的货币和价格的分析说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信