{"title":"ML-Optimized Beam-based Radio Coverage Processing in IEEE 802.11 WLAN Networks","authors":"Mehdi Guessous, L. Zenkouar","doi":"10.1109/EECSI.2018.8752874","DOIUrl":null,"url":null,"abstract":"Dynamic Radio Resource Management (RRM) is a major building block of Wireless LAN Controllers (WLC) function in WLAN networks. In a dense and frequently changing WLANs, it maximizes Wireless Devices (WD) opportunity to transmit and guarantees conformance to the design Service Level Agreement (SLA). To achieve this performance, a WLC processes and applies a network-wide optimized radio plan based on data from access points (AP) and upper-layer application services. This coverage processing requires a \"realistic\" modelization approach of the radio environment and a quick adaptation to frequent changes. In this paper, we build on our Beam-based approach to radio coverage modelization. We propose a new Machine Learning Regression (MLR)-based optimization and compare it to our NURBS-based solution performance, as an alternative. We show that both solutions have very comparable processing times. Nevertheless, our MLR-based solution represents a more significant prediction accuracy enhancement than its alternative.","PeriodicalId":6543,"journal":{"name":"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)","volume":"36 1","pages":"564-570"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EECSI.2018.8752874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Dynamic Radio Resource Management (RRM) is a major building block of Wireless LAN Controllers (WLC) function in WLAN networks. In a dense and frequently changing WLANs, it maximizes Wireless Devices (WD) opportunity to transmit and guarantees conformance to the design Service Level Agreement (SLA). To achieve this performance, a WLC processes and applies a network-wide optimized radio plan based on data from access points (AP) and upper-layer application services. This coverage processing requires a "realistic" modelization approach of the radio environment and a quick adaptation to frequent changes. In this paper, we build on our Beam-based approach to radio coverage modelization. We propose a new Machine Learning Regression (MLR)-based optimization and compare it to our NURBS-based solution performance, as an alternative. We show that both solutions have very comparable processing times. Nevertheless, our MLR-based solution represents a more significant prediction accuracy enhancement than its alternative.