Z. Bittner, D. Forbes, C. Bailey, S. Polly, M. Slocum, C. Kerestes, S. Hubbard
{"title":"Characterization of InGaP heterojunction emitter quantum dot solar cells","authors":"Z. Bittner, D. Forbes, C. Bailey, S. Polly, M. Slocum, C. Kerestes, S. Hubbard","doi":"10.1109/PVSC.2012.6318249","DOIUrl":null,"url":null,"abstract":"Heterojunction emitter InAs/GaAs quantum dot solar cells (QDSC) with an In0.48Ga0.52P (InGaP) n-type emitter and p-type GaAs base were fabricated along with homojunction nip solar cells in order to enable sub-cell polarity compatibility of InAs/GaAs QDSCs with current state-of-the-art monolithic InGaP/GaAs/Ge triple junction solar cells for space applications and to investigate potential dark current suppression effects and electronic field enhancement effects on carrier collection in InAs/GaAs QDSC. Quantum dot solar cells with one-Sun AM0 open circuit voltages greater than 970 mV were fabricated as compared to a 1.020 V heterojunction emitter `control' sample. Preliminary testing showed a reduction in short circuit current density from homojunction to heterojunction GaAs solar cells, primarily from changes in reflection and uncollected absorption in the InGaP emitter.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6318249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Heterojunction emitter InAs/GaAs quantum dot solar cells (QDSC) with an In0.48Ga0.52P (InGaP) n-type emitter and p-type GaAs base were fabricated along with homojunction nip solar cells in order to enable sub-cell polarity compatibility of InAs/GaAs QDSCs with current state-of-the-art monolithic InGaP/GaAs/Ge triple junction solar cells for space applications and to investigate potential dark current suppression effects and electronic field enhancement effects on carrier collection in InAs/GaAs QDSC. Quantum dot solar cells with one-Sun AM0 open circuit voltages greater than 970 mV were fabricated as compared to a 1.020 V heterojunction emitter `control' sample. Preliminary testing showed a reduction in short circuit current density from homojunction to heterojunction GaAs solar cells, primarily from changes in reflection and uncollected absorption in the InGaP emitter.