An investigation on thermodynamics and kinetics of η phase formation in Nb-modified iron-nickel base A286 superalloy

Reza Soleimani Gilakjani, S. H. Razavi, M. Seifollahi
{"title":"An investigation on thermodynamics and kinetics of η phase formation in Nb-modified iron-nickel base A286 superalloy","authors":"Reza Soleimani Gilakjani, S. H. Razavi, M. Seifollahi","doi":"10.1051/metal/2020084","DOIUrl":null,"url":null,"abstract":"In this study, precipitation of η phase (Ni3 Ti) in conventional and Nb-modified (Nb-A286) A286 superalloys was evaluated at different aging times and temperatures. The TTP curve of the η phase formation was plotted using thermodynamic analyses, kinetics and microstructural studies. Depending on temperature and heat treatment, the η phase precipitated at the grain boundaries or twin sites, as a result of the γ′ phase or matrix austenite transformation. Heat treatment of conventional A286 superalloy and Nb-A286 was performed within a temperature range of 650 to 900 °C for 2 to 30 h. The η phase transformation was evaluated by scanning electron microscope (SEM) which is equipped to energy dispersive X-ray spectroscopy (EDS) and optical microscopy (OM). In the analyses based on thermodynamic calculations, the interaction of the Gibbs free energy of η phase formation and the diffusion activation energy of the elements, especially titanium and niobium, was considered. The microstructural studies showed that increasing the heat treatment time results in increasing the volume fraction of the η phase. By increasing the aging temperature to 840 and 860 °C for conventional A286 superalloy and Nb-A286 superalloy, respectively, the η phase volume fraction increased, however, further increase led to volume fraction decrease. The results of the thermodynamic analyses showed the tip of the TTP diagrams at temperatures of 860 and 820 °C for the A286 and Nb-A286 alloys, respectively. Investigation of kinetics calculations showed that η phase transformation depends on the diffusion of titanium, nickel, and niobium.","PeriodicalId":21337,"journal":{"name":"Revue De Metallurgie-cahiers D Informations Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue De Metallurgie-cahiers D Informations Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/metal/2020084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, precipitation of η phase (Ni3 Ti) in conventional and Nb-modified (Nb-A286) A286 superalloys was evaluated at different aging times and temperatures. The TTP curve of the η phase formation was plotted using thermodynamic analyses, kinetics and microstructural studies. Depending on temperature and heat treatment, the η phase precipitated at the grain boundaries or twin sites, as a result of the γ′ phase or matrix austenite transformation. Heat treatment of conventional A286 superalloy and Nb-A286 was performed within a temperature range of 650 to 900 °C for 2 to 30 h. The η phase transformation was evaluated by scanning electron microscope (SEM) which is equipped to energy dispersive X-ray spectroscopy (EDS) and optical microscopy (OM). In the analyses based on thermodynamic calculations, the interaction of the Gibbs free energy of η phase formation and the diffusion activation energy of the elements, especially titanium and niobium, was considered. The microstructural studies showed that increasing the heat treatment time results in increasing the volume fraction of the η phase. By increasing the aging temperature to 840 and 860 °C for conventional A286 superalloy and Nb-A286 superalloy, respectively, the η phase volume fraction increased, however, further increase led to volume fraction decrease. The results of the thermodynamic analyses showed the tip of the TTP diagrams at temperatures of 860 and 820 °C for the A286 and Nb-A286 alloys, respectively. Investigation of kinetics calculations showed that η phase transformation depends on the diffusion of titanium, nickel, and niobium.
nb改性铁镍基A286高温合金η相形成的热力学和动力学研究
研究了在不同时效时间和时效温度下,常规和nb改性(Nb-A286) A286高温合金中η相(Ni3 Ti)的析出情况。利用热力学分析、动力学和显微组织研究绘制了η相形成的TTP曲线。随着温度和热处理的不同,η相在晶界处或孪晶处析出,这是γ′相或基体奥氏体转变的结果。对常规A286高温合金和Nb-A286在650 ~ 900℃的温度范围内热处理2 ~ 30 h。采用能量色散x射线能谱仪(EDS)和光学显微镜(OM)对η相变进行了表征。在基于热力学计算的分析中,考虑了η相形成的吉布斯自由能与元素,特别是钛和铌的扩散活化能的相互作用。显微组织研究表明,随着热处理时间的延长,η相的体积分数增大。将常规A286高温合金和Nb-A286高温合金的时效温度分别提高到840℃和860℃,η相体积分数升高,但进一步升高导致体积分数降低。热力学分析结果表明,A286和Nb-A286合金分别在860℃和820℃的TTP图顶端。动力学计算表明,η相变取决于钛、镍和铌的扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信