The application of the variational method to neutron transport theory

G. Rowlands
{"title":"The application of the variational method to neutron transport theory","authors":"G. Rowlands","doi":"10.1016/0368-3265(61)90008-1","DOIUrl":null,"url":null,"abstract":"<div><p>Two distinct ways in which the variational method may be used to obtain approximate solutions of the equations which are involved in neutron transport theory are discussed. In the first, a method is given whereby an estimate of an eigenvalue or some weighted average of the solution of the equation is obtained. Whilst the second way is a method whereby a relatively complicated equation involving multi-dimensional variables is reduced to a number of simpler equations each in a fewer number of independent variables. Examples to illustrate both methods are given.</p></div>","PeriodicalId":100813,"journal":{"name":"Journal of Nuclear Energy. Part A. Reactor Science","volume":"13 3","pages":"Pages 176-182"},"PeriodicalIF":0.0000,"publicationDate":"1961-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0368-3265(61)90008-1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy. Part A. Reactor Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0368326561900081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Two distinct ways in which the variational method may be used to obtain approximate solutions of the equations which are involved in neutron transport theory are discussed. In the first, a method is given whereby an estimate of an eigenvalue or some weighted average of the solution of the equation is obtained. Whilst the second way is a method whereby a relatively complicated equation involving multi-dimensional variables is reduced to a number of simpler equations each in a fewer number of independent variables. Examples to illustrate both methods are given.

变分方法在中子输运理论中的应用
讨论了用变分法求得中子输运理论方程近似解的两种不同方法。在第一部分中,给出了一种方法,通过这种方法可以得到方程解的一个特征值的估计或一些加权平均值。而第二种方法是将一个涉及多维变量的相对复杂的方程简化为一些更简单的方程,每个方程包含较少数量的自变量。给出了两种方法的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信