Estefania Sanchez-Vasquez, Marianne E Bronner, Magdalena Zernicka-Goetz
{"title":"HIF1A-mediated pathways promote euploid cell survival in chromosomally mosaic embryos.","authors":"Estefania Sanchez-Vasquez, Marianne E Bronner, Magdalena Zernicka-Goetz","doi":"10.1101/2023.09.04.556218","DOIUrl":null,"url":null,"abstract":"<p><p>Human fertility is suboptimal in part by error-prone divisions during early cleavage stages, which frequently result in chromosomal aneuploidy. Most human pre-implantation embryos are mosaics of euploid and aneuploid cells, yet those with a low proportion of aneuploid cells can develop to term at rates similar to fully euploid embryos. How embryos manage aneuploidy during early development remains poorly understood - yet this knowledge is crucial for improving fertility outcomes and reducing developmental defects. To investigate these mechanisms, we established a new mouse model of chromosome mosaicism to trace the fate of aneuploid cells during pre-implantation development. We previously used the Mps1 inhibitor reversine to induce aneuploidy. Here, we demonstrate that the more specific Mps1 inhibitor AZ3146 similarly disrupts chromosome segregation but supports higher developmental potential than reversine. AZ3146-treated embryos transiently upregulate Hypoxia Inducible-Factor-1A (HIF1A) without triggering p53 activation. Given that pre-implantation embryos develop in a hypoxic environment <i>in vivo</i> , we further explored the role of oxygen tension. Hypoxia exposure <i>in vitro</i> reduced DNA damage in response to Mps1 inhibition and increased the proportion of euploid cells in mosaic epiblast. Conversely, HIF1A inhibition decreased the proportion of aneuploid cells. Together, these findings uncover a role for hypoxia signaling in modulating the response to chromosomal errors and suggest new strategies to improve the developmental potential of mosaic human embryos.</p>","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.04.556218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Human fertility is suboptimal in part by error-prone divisions during early cleavage stages, which frequently result in chromosomal aneuploidy. Most human pre-implantation embryos are mosaics of euploid and aneuploid cells, yet those with a low proportion of aneuploid cells can develop to term at rates similar to fully euploid embryos. How embryos manage aneuploidy during early development remains poorly understood - yet this knowledge is crucial for improving fertility outcomes and reducing developmental defects. To investigate these mechanisms, we established a new mouse model of chromosome mosaicism to trace the fate of aneuploid cells during pre-implantation development. We previously used the Mps1 inhibitor reversine to induce aneuploidy. Here, we demonstrate that the more specific Mps1 inhibitor AZ3146 similarly disrupts chromosome segregation but supports higher developmental potential than reversine. AZ3146-treated embryos transiently upregulate Hypoxia Inducible-Factor-1A (HIF1A) without triggering p53 activation. Given that pre-implantation embryos develop in a hypoxic environment in vivo , we further explored the role of oxygen tension. Hypoxia exposure in vitro reduced DNA damage in response to Mps1 inhibition and increased the proportion of euploid cells in mosaic epiblast. Conversely, HIF1A inhibition decreased the proportion of aneuploid cells. Together, these findings uncover a role for hypoxia signaling in modulating the response to chromosomal errors and suggest new strategies to improve the developmental potential of mosaic human embryos.
期刊介绍:
The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.