Explainable AI for sensor-based sorting systems

IF 0.8 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION
Mathias Anneken, M. Veerappa, Marco F. Huber, C. Kühnert, Felix Kronenwett, Georg Maier
{"title":"Explainable AI for sensor-based sorting systems","authors":"Mathias Anneken, M. Veerappa, Marco F. Huber, C. Kühnert, Felix Kronenwett, Georg Maier","doi":"10.1515/teme-2022-0097","DOIUrl":null,"url":null,"abstract":"Abstract Explainable artificial intelligence (XAI) can make machine learning based systems more transparent. This additional transparency can enable the use of machine learning in many different domains. In our work, we show how XAI methods can be applied to an autoencoder for anomaly detection in a sensor-based sorting system. The setup of the sorting system consists of a vibrating feeder, a conveyor belt, a line-scan camera and an array of fast-switching pneumatic valves. It allows the separation of a material stream into two fractions, realizing a binary sorting task. The autoencoder tries to mimic the normal behavior of the nozzle array and thus can detect abnormal behavior. The XAI methods are used to explain the output of the autoencoder. As XAI methods global and local approaches are used, which means we receive explanations for both a single result and the whole autoencoder. Initial results for both approaches are shown, together with possible interpretations of these results.","PeriodicalId":56086,"journal":{"name":"Tm-Technisches Messen","volume":"24 1","pages":"154 - 166"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tm-Technisches Messen","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/teme-2022-0097","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Explainable artificial intelligence (XAI) can make machine learning based systems more transparent. This additional transparency can enable the use of machine learning in many different domains. In our work, we show how XAI methods can be applied to an autoencoder for anomaly detection in a sensor-based sorting system. The setup of the sorting system consists of a vibrating feeder, a conveyor belt, a line-scan camera and an array of fast-switching pneumatic valves. It allows the separation of a material stream into two fractions, realizing a binary sorting task. The autoencoder tries to mimic the normal behavior of the nozzle array and thus can detect abnormal behavior. The XAI methods are used to explain the output of the autoencoder. As XAI methods global and local approaches are used, which means we receive explanations for both a single result and the whole autoencoder. Initial results for both approaches are shown, together with possible interpretations of these results.
基于传感器的分类系统的可解释人工智能
可解释人工智能(XAI)可以使基于机器学习的系统更加透明。这种额外的透明度可以使机器学习在许多不同领域的使用成为可能。在我们的工作中,我们展示了如何将XAI方法应用于基于传感器的分类系统中的自动编码器中进行异常检测。分拣系统的设置由振动给料机、传送带、线扫描相机和一组快速切换的气动阀组成。它允许将物料流分成两个部分,实现二元分选任务。自动编码器试图模仿喷嘴阵列的正常行为,从而可以检测异常行为。XAI方法用于解释自编码器的输出。由于XAI方法使用了全局方法和局部方法,这意味着我们可以收到单个结果和整个自编码器的解释。本文展示了两种方法的初步结果,以及对这些结果的可能解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tm-Technisches Messen
Tm-Technisches Messen 工程技术-仪器仪表
CiteScore
1.70
自引率
20.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: The journal promotes dialogue between the developers of application-oriented sensors, measurement systems, and measurement methods and the manufacturers and measurement technologists who use them. Topics The manufacture and characteristics of new sensors for measurement technology in the industrial sector New measurement methods Hardware and software based processing and analysis of measurement signals to obtain measurement values The outcomes of employing new measurement systems and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信