Mahsa Rabiei, Seong Young Ko, Tarun K Podder, John Lederer, Bardia Konh
{"title":"HDR Brachytherapy Planning using Active Needles - Preliminary Investigation on Dose Planning.","authors":"Mahsa Rabiei, Seong Young Ko, Tarun K Podder, John Lederer, Bardia Konh","doi":"10.1109/biorob52689.2022.9925426","DOIUrl":null,"url":null,"abstract":"<p><p>In this study we present a new approach to plan a high-dose-rate (HDR) prostate brachytherapy (BT) using active needles recently developed by our group. The active needles realize bi-directional bending inside the tissue, and thereby more compliant with the patient's anatomy compared with conventional straight needles. A computational method is presented to first generate a needle arrangement configuration based on the patient's prostate anatomy. The needle arrangement is generated to cover the prostate volume, providing accessible channels for the radiation source during a HDR BT. The needle arrangement configuration avoids healthy organs and prevents needle collision inside the body. Then a treatment plan is proposed to ensure sufficient prescribed dosage to the whole prostate gland. The method is applied to a prostate model reconstructed from an anonymized patient to show the feasibility of this method. Finally, the active needle's capability to generate the required bending is shown. We have shown that our method is able to automatically generate needle arrangement configuration using active needles, and plan for a treatment that meets the dose objectives while using fewer needles (about 20% of conventional straight needles) than the conventional HDR BT performed by straight needles.</p>","PeriodicalId":74522,"journal":{"name":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","volume":"2022 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831751/pdf/nihms-1862729.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/biorob52689.2022.9925426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study we present a new approach to plan a high-dose-rate (HDR) prostate brachytherapy (BT) using active needles recently developed by our group. The active needles realize bi-directional bending inside the tissue, and thereby more compliant with the patient's anatomy compared with conventional straight needles. A computational method is presented to first generate a needle arrangement configuration based on the patient's prostate anatomy. The needle arrangement is generated to cover the prostate volume, providing accessible channels for the radiation source during a HDR BT. The needle arrangement configuration avoids healthy organs and prevents needle collision inside the body. Then a treatment plan is proposed to ensure sufficient prescribed dosage to the whole prostate gland. The method is applied to a prostate model reconstructed from an anonymized patient to show the feasibility of this method. Finally, the active needle's capability to generate the required bending is shown. We have shown that our method is able to automatically generate needle arrangement configuration using active needles, and plan for a treatment that meets the dose objectives while using fewer needles (about 20% of conventional straight needles) than the conventional HDR BT performed by straight needles.