JaeHyeck Lee, Yoon-Seo Nam, Yuming Liu, Hee-Joo Yang
{"title":"Study on predictability of ocean wave fields based on marine radar measurement data","authors":"JaeHyeck Lee, Yoon-Seo Nam, Yuming Liu, Hee-Joo Yang","doi":"10.1177/14750902231184096","DOIUrl":null,"url":null,"abstract":"In this study, the predictability of ocean wave fields is considered based on marine radar measurement data. Phase-resolved components obtained by applying 3D FFT-based reconstruction to a sequence of radar images are utilized for wave field prediction, and two different prediction approaches are introduced: (i) snapshot data-based prediction through the adjustment of the frequency and phase of each component, and (ii) spatiotemporal data-based prediction through the data assimilation for reconstructed wave fields. Furthermore, the time evolution of a predictable zone is derived for different shapes of measurement domains including rectangular and ring-shaped domains. To validate the proposed wave propagation modeling method, numerical simulations are conducted on synthetic radar images created by reflecting geometrical shadowing effects, and the prediction accuracy is examined in relation to the derived predictable zone. Lastly, the forecasting performance, which is represented by the predictable time range at a radar location, is discussed with respect to the prediction techniques, specifications of the reconstruction domain, and moving measurements.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231184096","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, the predictability of ocean wave fields is considered based on marine radar measurement data. Phase-resolved components obtained by applying 3D FFT-based reconstruction to a sequence of radar images are utilized for wave field prediction, and two different prediction approaches are introduced: (i) snapshot data-based prediction through the adjustment of the frequency and phase of each component, and (ii) spatiotemporal data-based prediction through the data assimilation for reconstructed wave fields. Furthermore, the time evolution of a predictable zone is derived for different shapes of measurement domains including rectangular and ring-shaped domains. To validate the proposed wave propagation modeling method, numerical simulations are conducted on synthetic radar images created by reflecting geometrical shadowing effects, and the prediction accuracy is examined in relation to the derived predictable zone. Lastly, the forecasting performance, which is represented by the predictable time range at a radar location, is discussed with respect to the prediction techniques, specifications of the reconstruction domain, and moving measurements.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.