OPTIMIZATION OF BIODIESEL PRODUCTION FROM WASTE VEGETABLE OIL USING Zr- OXIDE CATALYST ANCHORED ON CARBONIZED MATERIAL

E. O. Babatunde, F. Aderibigbe, Joseph Isaac Adekunle, Paul Oluwatobi, C. Are
{"title":"OPTIMIZATION OF BIODIESEL PRODUCTION FROM WASTE VEGETABLE OIL USING Zr- OXIDE CATALYST ANCHORED ON CARBONIZED MATERIAL","authors":"E. O. Babatunde, F. Aderibigbe, Joseph Isaac Adekunle, Paul Oluwatobi, C. Are","doi":"10.48141/sbjchem.21scon.37_abstract_babatunde.pdf","DOIUrl":null,"url":null,"abstract":"The current investigation emphasizes preparing low-cost carbon-based zirconium impregnated heterogeneous catalysts from wood dust to produce biodiesel from waste vegetable oil (WVO). Response Surface Methodology via Central Composite Design (RSM-CCD) optimized the biodiesel production process. The physico-chemical properties of waste vegetable methyl ester were determined following the American Standard Testing of Materials (ASTM). The optimum conditions were observed to be 8:1 methanol/oil ratio, 5 wt% catalyst loading, 55°C temperature, and 3 h reaction time. The corresponding response was observed to be 98.39%. The catalyst morphology and elemental composition were determined using Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX), respectively. The experimental analysis confirmed that the synthesized catalyst from wood dust under optimized conditions can transesterify WVO into biodiesel.","PeriodicalId":20606,"journal":{"name":"Proceedings of the SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 2021 INTERNATIONAL VIRTUAL CONFERENCE","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 2021 INTERNATIONAL VIRTUAL CONFERENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48141/sbjchem.21scon.37_abstract_babatunde.pdf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current investigation emphasizes preparing low-cost carbon-based zirconium impregnated heterogeneous catalysts from wood dust to produce biodiesel from waste vegetable oil (WVO). Response Surface Methodology via Central Composite Design (RSM-CCD) optimized the biodiesel production process. The physico-chemical properties of waste vegetable methyl ester were determined following the American Standard Testing of Materials (ASTM). The optimum conditions were observed to be 8:1 methanol/oil ratio, 5 wt% catalyst loading, 55°C temperature, and 3 h reaction time. The corresponding response was observed to be 98.39%. The catalyst morphology and elemental composition were determined using Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX), respectively. The experimental analysis confirmed that the synthesized catalyst from wood dust under optimized conditions can transesterify WVO into biodiesel.
氧化锆催化剂固载于碳化材料上以废植物油为原料生产生物柴油的优化研究
目前的研究重点是从木屑中制备低成本的碳基锆浸渍异相催化剂,用于废植物油生产生物柴油。响应面法通过中心复合设计(RSM-CCD)优化了生物柴油的生产过程。采用美国材料试验标准(ASTM)测定了废植物甲酯的理化性质。最佳反应条件为甲醇/油比为8:1,催化剂负载为5wt %,温度55℃,反应时间3h。相应的应答率为98.39%。采用扫描电镜(SEM)和能量色散x射线(EDX)对催化剂的形貌和元素组成进行了表征。实验分析证实,在优化条件下合成的木屑催化剂可以将WVO酯交换成生物柴油。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信