On the Effectiveness of Offline RL for Dialogue Response Generation

Paloma Sodhi, Felix Wu, Ethan R. Elenberg, Kilian Q. Weinberger, Ryan T. McDonald
{"title":"On the Effectiveness of Offline RL for Dialogue Response Generation","authors":"Paloma Sodhi, Felix Wu, Ethan R. Elenberg, Kilian Q. Weinberger, Ryan T. McDonald","doi":"10.48550/arXiv.2307.12425","DOIUrl":null,"url":null,"abstract":"A common training technique for language models is teacher forcing (TF). TF attempts to match human language exactly, even though identical meanings can be expressed in different ways. This motivates use of sequence-level objectives for dialogue response generation. In this paper, we study the efficacy of various offline reinforcement learning (RL) methods to maximize such objectives. We present a comprehensive evaluation across multiple datasets, models, and metrics. Offline RL shows a clear performance improvement over teacher forcing while not inducing training instability or sacrificing practical training budgets.","PeriodicalId":74529,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","volume":"3 1","pages":"32088-32104"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.12425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A common training technique for language models is teacher forcing (TF). TF attempts to match human language exactly, even though identical meanings can be expressed in different ways. This motivates use of sequence-level objectives for dialogue response generation. In this paper, we study the efficacy of various offline reinforcement learning (RL) methods to maximize such objectives. We present a comprehensive evaluation across multiple datasets, models, and metrics. Offline RL shows a clear performance improvement over teacher forcing while not inducing training instability or sacrificing practical training budgets.
离线强化学习在对话响应生成中的有效性研究
一种常见的语言模型训练技术是教师强迫(TF)。TF试图完全匹配人类语言,即使相同的意思可以用不同的方式表达。这促使使用序列级目标生成对话响应。在本文中,我们研究了各种离线强化学习(RL)方法的有效性,以最大化这些目标。我们提出了跨多个数据集、模型和指标的综合评估。离线强化学习在不导致培训不稳定或牺牲实际培训预算的情况下,比教师强迫表现出明显的绩效改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信