Demand Prediction and Optimal Allocation of Shared Bikes Around Urban Rail Transit Stations.

IF 1.7 4区 工程技术 Q4 TRANSPORTATION
Liang Yu, Tao Feng, Tie Li, Lei Cheng
{"title":"Demand Prediction and Optimal Allocation of Shared Bikes Around Urban Rail Transit Stations.","authors":"Liang Yu,&nbsp;Tao Feng,&nbsp;Tie Li,&nbsp;Lei Cheng","doi":"10.1007/s40864-022-00183-w","DOIUrl":null,"url":null,"abstract":"<p><p>The imbalance between the supply and demand of shared bikes is prominent in many urban rail transit stations, which urgently requires an efficient vehicle deployment strategy. In this paper, we propose an integrated model to optimize the deployment of shared bikes around urban rail transit stations, incorporating a seasonal autoregressive integrated moving average with long short-term memory (SARIMA-LSTM) hybrid model that is used to predict the heterogeneous demand for shared bikes in space and time. The shared bike deployment strategy was formulated based on the actual deployment process and under the principle of cost minimization involving labor and transportation. The model is applied using the big data of shared bikes in Xicheng District, Beijing. Results show that the SARIMA-LSTM hybrid model has great advantages in predicting the demand for shared bikes. The proposed allocation strategy provides a new way to solve the imbalance challenge between the supply and demand of shared bikes and contributes to the development of a sustainable transportation system.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747082/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40864-022-00183-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 4

Abstract

The imbalance between the supply and demand of shared bikes is prominent in many urban rail transit stations, which urgently requires an efficient vehicle deployment strategy. In this paper, we propose an integrated model to optimize the deployment of shared bikes around urban rail transit stations, incorporating a seasonal autoregressive integrated moving average with long short-term memory (SARIMA-LSTM) hybrid model that is used to predict the heterogeneous demand for shared bikes in space and time. The shared bike deployment strategy was formulated based on the actual deployment process and under the principle of cost minimization involving labor and transportation. The model is applied using the big data of shared bikes in Xicheng District, Beijing. Results show that the SARIMA-LSTM hybrid model has great advantages in predicting the demand for shared bikes. The proposed allocation strategy provides a new way to solve the imbalance challenge between the supply and demand of shared bikes and contributes to the development of a sustainable transportation system.

Abstract Image

Abstract Image

Abstract Image

城市轨道交通站点共享单车需求预测与优化配置。
在许多城市轨道交通站点,共享单车的供需不平衡问题十分突出,迫切需要一种高效的车辆调配策略。本文提出了一个优化城市轨道交通站点共享单车配置的集成模型,该模型采用季节性自回归综合移动平均带长短期记忆(SARIMA-LSTM)混合模型,用于预测城市轨道交通站点共享单车在空间和时间上的异质性需求。共享单车的部署策略是根据实际部署过程,在劳动力和交通成本最小化的原则下制定的。该模型以北京市西城区共享单车大数据为例进行了应用。结果表明,SARIMA-LSTM混合模型在预测共享单车需求方面具有很大的优势。所提出的分配策略为解决共享单车供需不平衡的挑战提供了新的途径,有助于可持续交通系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Urban Rail Transit
Urban Rail Transit Multiple-
CiteScore
3.10
自引率
6.70%
发文量
20
审稿时长
5 weeks
期刊介绍: Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field. Specific topics cover: Column I: Urban Rail Transportation Operation and Management • urban rail transit flow theory, operation, planning, control and management • traffic and transport safety • traffic polices and economics • urban rail management • traffic information management • urban rail scheduling • train scheduling and management • strategies of ticket price • traffic information engineering & control • intelligent transportation system (ITS) and information technology • economics, finance, business & industry • train operation, control • transport Industries • transportation engineering Column II: Urban Rail Transportation Design and Planning • urban rail planning • pedestrian studies • sustainable transport engineering • rail electrification • rail signaling and communication • Intelligent & Automated Transport System Technology ? • rolling stock design theory and structural reliability • urban rail transit electrification and automation technologies • transport Industries • transportation engineering Column III: Civil Engineering • civil engineering technologies • maintenance of rail infrastructure • transportation infrastructure systems • roads, bridges, tunnels, and underground engineering ? • subgrade and pavement maintenance and performance Column IV: Equipments and Systems • mechanical-electronic technologies • manufacturing engineering • inspection for trains and rail • vehicle-track coupling system dynamics, simulation and control • superconductivity and levitation technology • magnetic suspension and evacuated tube transport • railway technology & engineering • Railway Transport Industries • transport & vehicle engineering Column V: other topics of interest • modern tram • interdisciplinary transportation research • environmental impacts such as vibration, noise and pollution Article types: • Papers. Reports of original research work. • Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems. • Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication. • Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信