{"title":"Demand Prediction and Optimal Allocation of Shared Bikes Around Urban Rail Transit Stations.","authors":"Liang Yu, Tao Feng, Tie Li, Lei Cheng","doi":"10.1007/s40864-022-00183-w","DOIUrl":null,"url":null,"abstract":"<p><p>The imbalance between the supply and demand of shared bikes is prominent in many urban rail transit stations, which urgently requires an efficient vehicle deployment strategy. In this paper, we propose an integrated model to optimize the deployment of shared bikes around urban rail transit stations, incorporating a seasonal autoregressive integrated moving average with long short-term memory (SARIMA-LSTM) hybrid model that is used to predict the heterogeneous demand for shared bikes in space and time. The shared bike deployment strategy was formulated based on the actual deployment process and under the principle of cost minimization involving labor and transportation. The model is applied using the big data of shared bikes in Xicheng District, Beijing. Results show that the SARIMA-LSTM hybrid model has great advantages in predicting the demand for shared bikes. The proposed allocation strategy provides a new way to solve the imbalance challenge between the supply and demand of shared bikes and contributes to the development of a sustainable transportation system.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":"9 1","pages":"57-71"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747082/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40864-022-00183-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 4
Abstract
The imbalance between the supply and demand of shared bikes is prominent in many urban rail transit stations, which urgently requires an efficient vehicle deployment strategy. In this paper, we propose an integrated model to optimize the deployment of shared bikes around urban rail transit stations, incorporating a seasonal autoregressive integrated moving average with long short-term memory (SARIMA-LSTM) hybrid model that is used to predict the heterogeneous demand for shared bikes in space and time. The shared bike deployment strategy was formulated based on the actual deployment process and under the principle of cost minimization involving labor and transportation. The model is applied using the big data of shared bikes in Xicheng District, Beijing. Results show that the SARIMA-LSTM hybrid model has great advantages in predicting the demand for shared bikes. The proposed allocation strategy provides a new way to solve the imbalance challenge between the supply and demand of shared bikes and contributes to the development of a sustainable transportation system.
期刊介绍:
Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field.
Specific topics cover:
Column I: Urban Rail Transportation Operation and Management
• urban rail transit flow theory, operation, planning, control and management
• traffic and transport safety
• traffic polices and economics
• urban rail management
• traffic information management
• urban rail scheduling
• train scheduling and management
• strategies of ticket price
• traffic information engineering & control
• intelligent transportation system (ITS) and information technology
• economics, finance, business & industry
• train operation, control
• transport Industries
• transportation engineering
Column II: Urban Rail Transportation Design and Planning
• urban rail planning
• pedestrian studies
• sustainable transport engineering
• rail electrification
• rail signaling and communication
• Intelligent & Automated Transport System Technology ?
• rolling stock design theory and structural reliability
• urban rail transit electrification and automation technologies
• transport Industries
• transportation engineering
Column III: Civil Engineering
• civil engineering technologies
• maintenance of rail infrastructure
• transportation infrastructure systems
• roads, bridges, tunnels, and underground engineering ?
• subgrade and pavement maintenance and performance
Column IV: Equipments and Systems
• mechanical-electronic technologies
• manufacturing engineering
• inspection for trains and rail
• vehicle-track coupling system dynamics, simulation and control
• superconductivity and levitation technology
• magnetic suspension and evacuated tube transport
• railway technology & engineering
• Railway Transport Industries
• transport & vehicle engineering
Column V: other topics of interest
• modern tram
• interdisciplinary transportation research
• environmental impacts such as vibration, noise and pollution
Article types:
• Papers. Reports of original research work.
• Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems.
• Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication.
• Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.