V. Rubanik, D. A. Bahrets, V. Rubanik Jr., V. I. Urban, V. Dorodeiko
{"title":"Simulation of deformation behavior of TiNi alloy with TiN coatings for medical applications","authors":"V. Rubanik, D. A. Bahrets, V. Rubanik Jr., V. I. Urban, V. Dorodeiko","doi":"10.29235/1561-8358-2023-68-2-113-120","DOIUrl":null,"url":null,"abstract":"The deformation behavior of the titanium nickelide alloy Ti–55.84 wt. % Ni (TiNi) with titanium nitride (TiN) coatings obtained by arc-PVD has been simulated. Differential scanning calorimetry and three-point bending test were used to study the parameters of martensitic transformations and the deformation behavior of this alloy. The values of the characteristic temperatures for the TiNi alloy that can be used in medical applications were substantiated. The elastic-force characteristics of the alloy related to the properties in the superelastic state were considered. The dependiences of the change in the phase yield strength, the stress of the unloading plateau, and the residual deformation of the TiNi samples with TiN coatings on the ambient temperature range between 6 to 37 °C were determined. Based on these dependencies, a deformation curve was obtained that can predict the mechanical behavior of a TiNi product, for example, a stent, before and during its implantation into a human body. TiNi-based shape memory alloys are widely used in various branches of medicine; therefore, the development of technological methods for manufacturing products from TiNi with high corrosion resistance is promising.","PeriodicalId":20584,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus, Medical series","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus, Medical series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8358-2023-68-2-113-120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The deformation behavior of the titanium nickelide alloy Ti–55.84 wt. % Ni (TiNi) with titanium nitride (TiN) coatings obtained by arc-PVD has been simulated. Differential scanning calorimetry and three-point bending test were used to study the parameters of martensitic transformations and the deformation behavior of this alloy. The values of the characteristic temperatures for the TiNi alloy that can be used in medical applications were substantiated. The elastic-force characteristics of the alloy related to the properties in the superelastic state were considered. The dependiences of the change in the phase yield strength, the stress of the unloading plateau, and the residual deformation of the TiNi samples with TiN coatings on the ambient temperature range between 6 to 37 °C were determined. Based on these dependencies, a deformation curve was obtained that can predict the mechanical behavior of a TiNi product, for example, a stent, before and during its implantation into a human body. TiNi-based shape memory alloys are widely used in various branches of medicine; therefore, the development of technological methods for manufacturing products from TiNi with high corrosion resistance is promising.