Comparison of advanced turbulence models for the Taylor-Couette flow

IF 0.3 Q4 MECHANICS
Z. Malikov, F. K. Nazarov, M. Madaliev
{"title":"Comparison of advanced turbulence models for the Taylor-Couette flow","authors":"Z. Malikov, F. K. Nazarov, M. Madaliev","doi":"10.17223/19988621/78/10","DOIUrl":null,"url":null,"abstract":"Swirling flows of fluids and gases are an integral part of many complex flows which are widely encountered in nature and technology. The working process of numerous technical devices (cyclones, vortex combustion chambers, air separators, gas and steam turbines, electric machines and generators, etc.) is generally determined by the laws of hydrodynamics and heat exchange of rotating flows. The problem of deriving general laws for a turbulent flow in the field of centrifugal forces provokes considerable scientific interest since it belongs to an underdeveloped field of hydromechanics. Therefore, mathematical modeling of swirling turbulent flows is still an urgent problem. In this paper, a comparative analysis of the advanced turbulence models for the Taylor -Couette flow is carried out. For this purpose, the linear turbulence models (SARC and SST-RC), the Reynolds stress method SSG/LRR-RSM-w2012, and a two-fluid model are used. The results obtained using these models are compared with each other and with known experimental data and direct numerical simulation results. The numerical results calculated with the use of turbulence models for the Taylor-Couette flow confirm that almost all the models adequately describe velocity profiles. However, they yield different turbulent viscosity values and, as a result, different friction coefficients. A comparison of the numerical results shows that the friction coefficient calculated using a two-fluid turbulence model is the closest to that obtained experimentally.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/78/10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Swirling flows of fluids and gases are an integral part of many complex flows which are widely encountered in nature and technology. The working process of numerous technical devices (cyclones, vortex combustion chambers, air separators, gas and steam turbines, electric machines and generators, etc.) is generally determined by the laws of hydrodynamics and heat exchange of rotating flows. The problem of deriving general laws for a turbulent flow in the field of centrifugal forces provokes considerable scientific interest since it belongs to an underdeveloped field of hydromechanics. Therefore, mathematical modeling of swirling turbulent flows is still an urgent problem. In this paper, a comparative analysis of the advanced turbulence models for the Taylor -Couette flow is carried out. For this purpose, the linear turbulence models (SARC and SST-RC), the Reynolds stress method SSG/LRR-RSM-w2012, and a two-fluid model are used. The results obtained using these models are compared with each other and with known experimental data and direct numerical simulation results. The numerical results calculated with the use of turbulence models for the Taylor-Couette flow confirm that almost all the models adequately describe velocity profiles. However, they yield different turbulent viscosity values and, as a result, different friction coefficients. A comparison of the numerical results shows that the friction coefficient calculated using a two-fluid turbulence model is the closest to that obtained experimentally.
Taylor-Couette流先进湍流模型的比较
流体和气体的旋流是自然界和技术中广泛遇到的许多复杂流动的组成部分。许多技术装置(旋风分离器、涡流燃烧室、空气分离器、燃气轮机和汽轮机、电机和发电机等)的工作过程一般是由旋转流动的流体力学和热交换规律决定的。导出离心力领域中紊流的一般规律的问题引起了相当大的科学兴趣,因为它属于一个不发达的流体力学领域。因此,旋流湍流的数学建模仍然是一个亟待解决的问题。本文对Taylor -Couette流的先进湍流模型进行了比较分析。为此,采用了线性湍流模型(SARC和SST-RC)、雷诺应力法SSG/LRR-RSM-w2012和双流体模型。利用这些模型得到的结果相互比较,并与已知的实验数据和直接数值模拟结果进行比较。用湍流模型计算Taylor-Couette流的数值结果证实,几乎所有的模型都能充分描述速度分布。然而,它们产生不同的湍流粘度值,因此产生不同的摩擦系数。数值计算结果表明,采用双流体湍流模型计算的摩擦系数与实验结果最接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信