M. Panin, A. R. Gareev, A. P. Karpov, D. S. Maksimova, N.A. Korchinskiy
{"title":"Analysis of Textile Structures in Reinforcing Components of the Composite Materials and Selection of their Application Areas","authors":"M. Panin, A. R. Gareev, A. P. Karpov, D. S. Maksimova, N.A. Korchinskiy","doi":"10.18698/0236-3941-2023-2-15-28","DOIUrl":null,"url":null,"abstract":"Textile structures and technological solutions in reinforcement of the special purpose composite materials were analyzed. Ways to optimize structures and processes of reinforcing the composite materials subjected to high loads in their operation were considered. Composite materials methods of strengthening with various windings of closed structure were theoretically substantiated, as well as possibilities to obtain products with the maximum filling factor of composites with the reinforcing component, including creation of the carbon-carbon composite materials for special purposes. It is shown that in order to preserve physical and mechanical properties of the composite materials, it is required to give preference to the one-process methods in formation of the reinforcing fillers, which could reduce the number of abrasion effects on the fiber. An important factor in reinforcing and creating the carbon-carbon composite materials by winding is the direction of external axial loads, which are known in advance. In order to avoid destruction of the upper layers of the product structure exposed to action of the axial forces, the package should be oriented in such a way that the thread cohesive forces prevent separation (peeling) of the unbound winding turns. It is shown that the one-process method of forming the composite material reinforcing component by winding ensures minimum abrasive (destructive) effect on the threads during their winding on a mandrel","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/0236-3941-2023-2-15-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Textile structures and technological solutions in reinforcement of the special purpose composite materials were analyzed. Ways to optimize structures and processes of reinforcing the composite materials subjected to high loads in their operation were considered. Composite materials methods of strengthening with various windings of closed structure were theoretically substantiated, as well as possibilities to obtain products with the maximum filling factor of composites with the reinforcing component, including creation of the carbon-carbon composite materials for special purposes. It is shown that in order to preserve physical and mechanical properties of the composite materials, it is required to give preference to the one-process methods in formation of the reinforcing fillers, which could reduce the number of abrasion effects on the fiber. An important factor in reinforcing and creating the carbon-carbon composite materials by winding is the direction of external axial loads, which are known in advance. In order to avoid destruction of the upper layers of the product structure exposed to action of the axial forces, the package should be oriented in such a way that the thread cohesive forces prevent separation (peeling) of the unbound winding turns. It is shown that the one-process method of forming the composite material reinforcing component by winding ensures minimum abrasive (destructive) effect on the threads during their winding on a mandrel
期刊介绍:
The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.