FM2u-Net: Face Morphological Multi-Branch Network for Makeup-Invariant Face Verification

Wenxuan Wang, Yanwei Fu, Xuelin Qian, Yu-Gang Jiang, Qi Tian, X. Xue
{"title":"FM2u-Net: Face Morphological Multi-Branch Network for Makeup-Invariant Face Verification","authors":"Wenxuan Wang, Yanwei Fu, Xuelin Qian, Yu-Gang Jiang, Qi Tian, X. Xue","doi":"10.1109/cvpr42600.2020.00577","DOIUrl":null,"url":null,"abstract":"It is challenging in learning a makeup-invariant face verification model, due to (1) insufficient makeup/non-makeup face training pairs, (2) the lack of diverse makeup faces, and (3) the significant appearance changes caused by cosmetics. To address these challenges, we propose a unified Face Morphological Multi-branch Network (FMMu-Net) for makeup-invariant face verification, which can simultaneously synthesize many diverse makeup faces through face morphology network (FM-Net) and effectively learn cosmetics-robust face representations using attention-based multi-branch learning network (AttM-Net). For challenges (1) and (2), FM-Net (two stacked auto-encoders) can synthesize realistic makeup face images by transferring specific regions of cosmetics via cycle consistent loss. For challenge (3), AttM-Net, consisting of one global and three local (task-driven on two eyes and mouth) branches, can effectively capture the complementary holistic and detailed information. Unlike DeepID2 which uses simple concatenation fusion, we introduce a heuristic method AttM-FM, attached to AttM-Net, to adaptively weight the features of different branches guided by the holistic information. We conduct extensive experiments on makeup face verification benchmarks (M-501, M-203, and FAM) and general face recognition datasets (LFW and IJB-A). Our framework FMMu-Net achieves state-of-the-art performances.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"24 1","pages":"5729-5739"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

It is challenging in learning a makeup-invariant face verification model, due to (1) insufficient makeup/non-makeup face training pairs, (2) the lack of diverse makeup faces, and (3) the significant appearance changes caused by cosmetics. To address these challenges, we propose a unified Face Morphological Multi-branch Network (FMMu-Net) for makeup-invariant face verification, which can simultaneously synthesize many diverse makeup faces through face morphology network (FM-Net) and effectively learn cosmetics-robust face representations using attention-based multi-branch learning network (AttM-Net). For challenges (1) and (2), FM-Net (two stacked auto-encoders) can synthesize realistic makeup face images by transferring specific regions of cosmetics via cycle consistent loss. For challenge (3), AttM-Net, consisting of one global and three local (task-driven on two eyes and mouth) branches, can effectively capture the complementary holistic and detailed information. Unlike DeepID2 which uses simple concatenation fusion, we introduce a heuristic method AttM-FM, attached to AttM-Net, to adaptively weight the features of different branches guided by the holistic information. We conduct extensive experiments on makeup face verification benchmarks (M-501, M-203, and FAM) and general face recognition datasets (LFW and IJB-A). Our framework FMMu-Net achieves state-of-the-art performances.
FM2u-Net:人脸形态多分支网络的化妆不变人脸验证
由于(1)化妆/不化妆面部训练对不足,(2)缺乏多样化的化妆面部,以及(3)化妆品引起的显着外观变化,因此学习化妆不变面部验证模型具有挑战性。为了解决这些问题,我们提出了一种统一的面部形态学多分支网络(FMMu-Net)用于化妆不变人脸验证,该网络可以通过面部形态学网络(FM-Net)同时合成多种不同的化妆脸,并使用基于注意力的多分支学习网络(AttM-Net)有效地学习化妆品鲁棒性面部表征。对于挑战(1)和(2),FM-Net(两个堆叠的自编码器)可以通过循环一致损失转移化妆品的特定区域来合成逼真的化妆面部图像。对于挑战(3),AttM-Net由一个全局分支和三个局部分支(两个眼和嘴的任务驱动)组成,可以有效地捕获互补的整体和详细信息。与DeepID2使用简单的拼接融合不同,我们引入了一种附加于AttM-Net的启发式方法AttM-FM,在整体信息的引导下自适应加权不同分支的特征。我们在化妆脸验证基准(M-501、M-203和FAM)和通用人脸识别数据集(LFW和IJB-A)上进行了广泛的实验。我们的框架FMMu-Net实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信