Quadratic stabilization and L2 gain analysis of switched affine systems

Chi Huang, G. Zhai, Wenzhi Li
{"title":"Quadratic stabilization and L2 gain analysis of switched affine systems","authors":"Chi Huang, G. Zhai, Wenzhi Li","doi":"10.1109/CCDC.2017.7978848","DOIUrl":null,"url":null,"abstract":"We consider quadratic stabilization and L2 gain analysis for switched systems which are composed of a finite set of time-invariant affine subsystems. Both subsystem matrices and vectors are switched, and no single subsystem has desired quadratic stability or specific L2 gain property. We show that if a convex combination of subsystem matrices is Hurwitz and another convex combination of affine vectors is zero, then we can design a state-dependent switching law (state feedback) and an output-dependent switching law (output feedback) such that the entire switched system is quadratically stable. The result is also extended to L2 gain analysis under state feedback.","PeriodicalId":6588,"journal":{"name":"2017 29th Chinese Control And Decision Conference (CCDC)","volume":"8 1","pages":"2018-2023"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2017.7978848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider quadratic stabilization and L2 gain analysis for switched systems which are composed of a finite set of time-invariant affine subsystems. Both subsystem matrices and vectors are switched, and no single subsystem has desired quadratic stability or specific L2 gain property. We show that if a convex combination of subsystem matrices is Hurwitz and another convex combination of affine vectors is zero, then we can design a state-dependent switching law (state feedback) and an output-dependent switching law (output feedback) such that the entire switched system is quadratically stable. The result is also extended to L2 gain analysis under state feedback.
切换仿射系统的二次镇定与L2增益分析
研究由有限定常仿射子系统组成的切换系统的二次镇定和L2增益分析。两个子系统矩阵和向量都是交换的,并且没有单个子系统具有期望的二次稳定性或特定的L2增益特性。我们证明了如果子系统矩阵的一个凸组合为Hurwitz,而仿射向量的另一个凸组合为零,那么我们可以设计一个状态相关的切换律(状态反馈)和一个输出相关的切换律(输出反馈),使得整个切换系统是二次稳定的。结果也推广到状态反馈下的L2增益分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信