Model checking existential logic on partially ordered sets

S. Bova, R. Ganian, Stefan Szeider
{"title":"Model checking existential logic on partially ordered sets","authors":"S. Bova, R. Ganian, Stefan Szeider","doi":"10.1145/2603088.2603110","DOIUrl":null,"url":null,"abstract":"We study the problem of checking whether an existential sentence (that is, a first-order sentence in prefix form built using existential quantifiers and all Boolean connectives) is true in a finite partially ordered set (in short, a poset). A poset is a reflexive, antisymmetric, and transitive digraph. The problem encompasses the fundamental embedding problem of finding an isomorphic copy of a poset as an induced substructure of another poset. Model checking existential logic is already NP-hard on a fixed poset; thus we investigate structural properties of posets yielding conditions for fixed-parameter tractability when the problem is parameterized by the sentence. We identify width as a central structural property (the width of a poset is the maximum size of a subset of pairwise incomparable elements); our main algorithmic result is that model checking existential logic on classes of finite posets of bounded width is fixed-parameter tractable. We observe a similar phenomenon in classical complexity, where we prove that the isomorphism problem is polynomial-time tractable on classes of posets of bounded width; this settles an open problem in order theory. We surround our main algorithmic result with complexity results on less restricted, natural neighboring classes of finite posets, establishing its tightness in this sense. We also relate our work with (and demonstrate its independence of) fundamental fixed-parameter tractability results for model checking on digraphs of bounded degree and bounded clique-width.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the problem of checking whether an existential sentence (that is, a first-order sentence in prefix form built using existential quantifiers and all Boolean connectives) is true in a finite partially ordered set (in short, a poset). A poset is a reflexive, antisymmetric, and transitive digraph. The problem encompasses the fundamental embedding problem of finding an isomorphic copy of a poset as an induced substructure of another poset. Model checking existential logic is already NP-hard on a fixed poset; thus we investigate structural properties of posets yielding conditions for fixed-parameter tractability when the problem is parameterized by the sentence. We identify width as a central structural property (the width of a poset is the maximum size of a subset of pairwise incomparable elements); our main algorithmic result is that model checking existential logic on classes of finite posets of bounded width is fixed-parameter tractable. We observe a similar phenomenon in classical complexity, where we prove that the isomorphism problem is polynomial-time tractable on classes of posets of bounded width; this settles an open problem in order theory. We surround our main algorithmic result with complexity results on less restricted, natural neighboring classes of finite posets, establishing its tightness in this sense. We also relate our work with (and demonstrate its independence of) fundamental fixed-parameter tractability results for model checking on digraphs of bounded degree and bounded clique-width.
部分有序集合上存在逻辑的模型检验
我们研究了在有限偏序集合(即偏序集合)中检验存在句(即使用存在量词和所有布尔连接词构建的前缀形式的一阶句)是否为真的问题。偏序集是自反的、反对称的、传递的有向图。这个问题包含了一个基本的嵌入问题,即寻找一个偏序集的同构副本作为另一个偏序集的诱导子结构。模型检验存在逻辑在固定偏序集上已经是np困难的;因此,我们研究了当问题被句子参数化时,偏置集产生定参数可跟踪性条件的结构性质。我们将宽度确定为中心结构属性(偏序集的宽度是成对不可比较元素子集的最大大小);我们的主要算法结果是有界宽度的有限偏置集类上的模型检验存在逻辑是固定参数可处理的。我们在经典复杂性中也观察到类似的现象,证明了在有界宽度的偏序集上同构问题是多项式时间可处理的;这解决了序理论中的一个开放性问题。我们将主要的算法结果与限制较少的、自然相邻类的有限偏置集的复杂性结果包围起来,从这个意义上建立了它的紧密性。我们还将我们的工作与有界度和有界团宽的有向图的模型检查的基本固定参数可追溯性结果联系起来(并证明其独立性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信