Prediction of septic and hypovolemic shock in intensive care unit patients using machine learning.

Q2 Medicine
Stela Mares Brasileiro Pessoa, Bianca Silva de Sousa Oliveira, Wendy Gomes Dos Santos, Augusto Novais Macedo Oliveira, Marianne Silveira Camargo, Douglas Leandro Aparecido Barbosa de Matos, Miquéias Martins Lima Silva, Carolina Cintra de Queiroz Medeiros, Cláudia Soares de Sousa Coelho, José de Souza Andrade Neto, Sóstenes Mistro
{"title":"Prediction of septic and hypovolemic shock in intensive care unit patients using machine learning.","authors":"Stela Mares Brasileiro Pessoa, Bianca Silva de Sousa Oliveira, Wendy Gomes Dos Santos, Augusto Novais Macedo Oliveira, Marianne Silveira Camargo, Douglas Leandro Aparecido Barbosa de Matos, Miquéias Martins Lima Silva, Carolina Cintra de Queiroz Medeiros, Cláudia Soares de Sousa Coelho, José de Souza Andrade Neto, Sóstenes Mistro","doi":"10.5935/0103-507X.20220280-pt","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To create and validate a model for predicting septic or hypovolemic shock from easily obtainable variables collected from patients at admission to an intensive care unit.</p><p><strong>Methods: </strong>A predictive modeling study with concurrent cohort data was conducted in a hospital in the interior of northeastern Brazil. Patients aged 18 years or older who were not using vasoactive drugs on the day of admission and were hospitalized from November 2020 to July 2021 were included. The Decision Tree, Random Forest, AdaBoost, Gradient Boosting and XGBoost classification algorithms were tested for use in building the model. The validation method used was k-fold cross validation. The evaluation metrics used were recall, precision and area under the Receiver Operating Characteristic curve.</p><p><strong>Results: </strong>A total of 720 patients were used to create and validate the model. The models showed high predictive capacity with areas under the Receiver Operating Characteristic curve of 0.979; 0.999; 0.980; 0.998 and 1.00 for the Decision Tree, Random Forest, AdaBoost, Gradient Boosting and XGBoost algorithms, respectively.</p><p><strong>Conclusion: </strong>The predictive model created and validated showed a high ability to predict septic and hypovolemic shock from the time of admission of patients to the intensive care unit.</p>","PeriodicalId":53519,"journal":{"name":"Revista Brasileira de Terapia Intensiva","volume":"34 4","pages":"477-483"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986996/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Terapia Intensiva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5935/0103-507X.20220280-pt","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To create and validate a model for predicting septic or hypovolemic shock from easily obtainable variables collected from patients at admission to an intensive care unit.

Methods: A predictive modeling study with concurrent cohort data was conducted in a hospital in the interior of northeastern Brazil. Patients aged 18 years or older who were not using vasoactive drugs on the day of admission and were hospitalized from November 2020 to July 2021 were included. The Decision Tree, Random Forest, AdaBoost, Gradient Boosting and XGBoost classification algorithms were tested for use in building the model. The validation method used was k-fold cross validation. The evaluation metrics used were recall, precision and area under the Receiver Operating Characteristic curve.

Results: A total of 720 patients were used to create and validate the model. The models showed high predictive capacity with areas under the Receiver Operating Characteristic curve of 0.979; 0.999; 0.980; 0.998 and 1.00 for the Decision Tree, Random Forest, AdaBoost, Gradient Boosting and XGBoost algorithms, respectively.

Conclusion: The predictive model created and validated showed a high ability to predict septic and hypovolemic shock from the time of admission of patients to the intensive care unit.

Abstract Image

Abstract Image

Abstract Image

利用机器学习预测重症监护室患者的脓毒症和低血容量休克。
目的根据从重症监护病房入院患者处收集到的易于获得的变量,创建并验证一个预测脓毒症或低血容量休克的模型:方法: 在巴西东北部内陆地区的一家医院开展了一项预测模型研究,并同时收集了队列数据。研究纳入了入院当天未使用血管活性药物且在 2020 年 11 月至 2021 年 7 月期间住院的 18 岁及以上患者。在建立模型时,对决策树、随机森林、AdaBoost、梯度提升和 XGBoost 分类算法进行了测试。使用的验证方法是 k 倍交叉验证。评估指标为召回率、精确度和接收者工作特征曲线下面积:共有 720 名患者被用于创建和验证模型。模型显示出很高的预测能力,决策树、随机森林、AdaBoost、梯度提升和 XGBoost 算法的接收者工作特征曲线下面积分别为 0.979、0.999、0.980、0.998 和 1.00:所创建和验证的预测模型显示,该模型对脓毒性休克和低血容量性休克的预测能力很强,可以从患者进入重症监护室时就开始预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Brasileira de Terapia Intensiva
Revista Brasileira de Terapia Intensiva Medicine-Critical Care and Intensive Care Medicine
自引率
0.00%
发文量
114
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信