Youngghyu Sun, Jiyoung Lee, Soohyun Kim, Soohwan Kim, Heung-Jea Lee, Jinyoung Kim
{"title":"Prediction Technique of Energy Consumption based on Reinforcement Learning in Microgrids","authors":"Youngghyu Sun, Jiyoung Lee, Soohyun Kim, Soohwan Kim, Heung-Jea Lee, Jinyoung Kim","doi":"10.7236/JIIBC.2021.21.3.175","DOIUrl":null,"url":null,"abstract":"This paper analyzes the artificial intelligence-based approach for short-term energy consumption prediction. In this paper, we employ the reinforcement learning algorithms to improve the limitation of the supervised learning algorithms which usually utilize to the short-term energy consumption prediction technologies. The supervised learning algorithm-based approaches have high complexity because the approaches require contextual information as well as energy consumption data for sufficient performance. We propose a deep reinforcement learning algorithm based on multi-agent to predict energy consumption only with energy consumption data for improving the complexity of data and learning models. The proposed scheme is simulated using public energy consumption data and confirmed the performance. The proposed scheme can predict a similar value to the actual value except for the outlier data.","PeriodicalId":22795,"journal":{"name":"The Journal of the Institute of Webcasting, Internet and Telecommunication","volume":"34 1","pages":"175-181"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Institute of Webcasting, Internet and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/JIIBC.2021.21.3.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper analyzes the artificial intelligence-based approach for short-term energy consumption prediction. In this paper, we employ the reinforcement learning algorithms to improve the limitation of the supervised learning algorithms which usually utilize to the short-term energy consumption prediction technologies. The supervised learning algorithm-based approaches have high complexity because the approaches require contextual information as well as energy consumption data for sufficient performance. We propose a deep reinforcement learning algorithm based on multi-agent to predict energy consumption only with energy consumption data for improving the complexity of data and learning models. The proposed scheme is simulated using public energy consumption data and confirmed the performance. The proposed scheme can predict a similar value to the actual value except for the outlier data.