Peculiarities of numerical simulation of air/heat curtain operation in OpenFOAM

S. Grigorev, M. Koroleva, O. Mishchenkova
{"title":"Peculiarities of numerical simulation of air/heat curtain operation in OpenFOAM","authors":"S. Grigorev, M. Koroleva, O. Mishchenkova","doi":"10.15514/ispras-2023-35(2)-15","DOIUrl":null,"url":null,"abstract":"The issues of mathematical modeling of turbulent heat-conductive flow of compressible viscous medium in the internal volume of the body of an air-thermal curtain equipped with a tangential fan are considered. The solution of the problem is constructed on the basis of averaged Reynolds (Favre) Navier-Stokes equations. The solution of the problem is obtained using the MRF (Multiple Reference Frame) approach, which uses a rotating reference frame, and using a transformation of the basic Navier-Stokes equations in the rotation zone. In order to correctly describe the working processes occurring in the internal volume of the air-thermal curtain and in the environment, modular multiblock meshes are applied in the work, including those allowing to separate rotating and stationary areas. The solution of the set tasks is constructed using the tools of the OpenFOAM package. As a result of the work, the peculiarities of the flow structure in the flowing part of the air-heat curtain are described in detail, and the gas velocities achieved at different fan speeds are estimated. The self-similarity of velocity profiles at the air curtain nozzle outlet is shown.","PeriodicalId":33459,"journal":{"name":"Trudy Instituta sistemnogo programmirovaniia RAN","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Instituta sistemnogo programmirovaniia RAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15514/ispras-2023-35(2)-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The issues of mathematical modeling of turbulent heat-conductive flow of compressible viscous medium in the internal volume of the body of an air-thermal curtain equipped with a tangential fan are considered. The solution of the problem is constructed on the basis of averaged Reynolds (Favre) Navier-Stokes equations. The solution of the problem is obtained using the MRF (Multiple Reference Frame) approach, which uses a rotating reference frame, and using a transformation of the basic Navier-Stokes equations in the rotation zone. In order to correctly describe the working processes occurring in the internal volume of the air-thermal curtain and in the environment, modular multiblock meshes are applied in the work, including those allowing to separate rotating and stationary areas. The solution of the set tasks is constructed using the tools of the OpenFOAM package. As a result of the work, the peculiarities of the flow structure in the flowing part of the air-heat curtain are described in detail, and the gas velocities achieved at different fan speeds are estimated. The self-similarity of velocity profiles at the air curtain nozzle outlet is shown.
OpenFOAM中空气/热幕运行数值模拟的特点
考虑了带切向风扇的空气热幕内可压缩粘性介质的湍流导热流动的数学建模问题。该问题的解是在平均Reynolds (Favre) Navier-Stokes方程的基础上构造的。采用多参照系(MRF)方法,利用旋转参照系,在旋转区域内对基本Navier-Stokes方程进行变换,得到了问题的解。为了正确描述在空气热幕的内部体积和环境中发生的工作过程,在工作中应用了模块化的多块网格,包括那些允许分离旋转和静止区域的网格。设置任务的解决方案是使用OpenFOAM包的工具构建的。详细描述了空气热幕流动部分的流动结构特点,并对不同风扇转速下的气体速度进行了估计。结果表明,气幕喷管出口速度分布具有自相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
18
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信