Laser cooling in a chip-scale platform

J. McGilligan, J. McGilligan, K. Moore, A. Dellis, A. Dellis, G. Martinez, G. Martinez, E. Clercq, P. Griffin, A. Arnold, E. Riis, R. Boudot, R. Boudot, J. Kitching
{"title":"Laser cooling in a chip-scale platform","authors":"J. McGilligan, J. McGilligan, K. Moore, A. Dellis, A. Dellis, G. Martinez, G. Martinez, E. Clercq, P. Griffin, A. Arnold, E. Riis, R. Boudot, R. Boudot, J. Kitching","doi":"10.1063/5.0014658","DOIUrl":null,"url":null,"abstract":"Chip-scale atomic devices built around micro-fabricated alkali vapor cells are at the forefront of compact metrology and atomic sensors. We demonstrate a micro-fabricated vapor cell that is actively-pumped to ultra-high-vacuum (UHV) to achieve laser cooling. A grating magneto optical trap (GMOT) is incorporated with the 4 mm-thick Si/glass vacuum cell to demonstrate the feasibility of a fully-miniaturized laser cooling platform. A two-step optical excitation process in rubidium is used to overcome surface-scatter limitations to the GMOT imaging. The unambiguous miniaturization and form-customizability made available with micro-fabricated UHV cells provide a promising platform for future compact cold-atom sensors.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0014658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Chip-scale atomic devices built around micro-fabricated alkali vapor cells are at the forefront of compact metrology and atomic sensors. We demonstrate a micro-fabricated vapor cell that is actively-pumped to ultra-high-vacuum (UHV) to achieve laser cooling. A grating magneto optical trap (GMOT) is incorporated with the 4 mm-thick Si/glass vacuum cell to demonstrate the feasibility of a fully-miniaturized laser cooling platform. A two-step optical excitation process in rubidium is used to overcome surface-scatter limitations to the GMOT imaging. The unambiguous miniaturization and form-customizability made available with micro-fabricated UHV cells provide a promising platform for future compact cold-atom sensors.
芯片级平台的激光冷却
芯片级原子器件围绕微制造碱蒸汽电池构建,是紧凑型计量和原子传感器的前沿。我们展示了一种微型制造的蒸汽电池,它被主动泵送到超高真空(UHV)来实现激光冷却。将光栅磁光阱(GMOT)与4 mm厚的硅/玻璃真空电池结合在一起,以证明完全小型化激光冷却平台的可行性。利用铷的两步光激发过程克服了表面散射对GMOT成像的限制。微型制造的特高压电池具有明确的小型化和形状可定制性,为未来的紧凑型冷原子传感器提供了一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信