Guanyun Wang, Ye Tao, Ozguc Bertug Capunaman, Humphrey Yang, Lining Yao
{"title":"A-line: 4D Printing Morphing Linear Composite Structures","authors":"Guanyun Wang, Ye Tao, Ozguc Bertug Capunaman, Humphrey Yang, Lining Yao","doi":"10.1145/3290605.3300656","DOIUrl":null,"url":null,"abstract":"This paper presents A-line, a 4D printing system for designing and fabricating morphing three-dimensional shapes out of simple linear elements. In addition to the commonly known benefit of 4D printing to save printing time, printing materials, and packaging space, A-line also takes advantage of the unique properties of thin lines, including their suitability for compliant mechanisms and ability to travel through narrow spaces and self-deploy or self-lock on site. A-line integrates a method of bending angle control in up to eight directions for one printed line segment, using a single type of thermoplastic material. A software platform to support the design, simulation and tool path generation is developed to support the design and manufacturing of various A-line structures. Finally, the design space of A-line is explored through four application areas, including line sculpting, compliant mechanisms, self-deploying, and self-locking structures.","PeriodicalId":20454,"journal":{"name":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290605.3300656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
Abstract
This paper presents A-line, a 4D printing system for designing and fabricating morphing three-dimensional shapes out of simple linear elements. In addition to the commonly known benefit of 4D printing to save printing time, printing materials, and packaging space, A-line also takes advantage of the unique properties of thin lines, including their suitability for compliant mechanisms and ability to travel through narrow spaces and self-deploy or self-lock on site. A-line integrates a method of bending angle control in up to eight directions for one printed line segment, using a single type of thermoplastic material. A software platform to support the design, simulation and tool path generation is developed to support the design and manufacturing of various A-line structures. Finally, the design space of A-line is explored through four application areas, including line sculpting, compliant mechanisms, self-deploying, and self-locking structures.