K. Gee, Kyle G. Miller, Brent O. Reichman, Alan T. Wall
{"title":"Frequency-domain nonlinearity analysis of noise from a high-performance jet aircraft","authors":"K. Gee, Kyle G. Miller, Brent O. Reichman, Alan T. Wall","doi":"10.1121/2.0000899","DOIUrl":null,"url":null,"abstract":"Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.