Shi Su, R. Schulze-Riegert, Hussein Mustapha, Philipp Lang, Chakib Kada Kloucha
{"title":"Artificial Intelligence for Infill Well Placement and Design Optimization in Multi-layered/stacked Reservoirs Under Subsurface Uncertainty","authors":"Shi Su, R. Schulze-Riegert, Hussein Mustapha, Philipp Lang, Chakib Kada Kloucha","doi":"10.2118/207899-ms","DOIUrl":null,"url":null,"abstract":"\n Effective well placement and design planning accounts for subsurface uncertainties to estimate production and economic outcomes. Reservoir modelling and simulation workflows build on ensemble approaches to manage uncertainties for production forecasting. Ensemble generation and interpretation requires a higher degree of automation analytics and artificial intelligence for fast value extraction and decision support. This work develops practical intelligent workflow steps for a robust infill well placement and design scenario in multi-layered/stacked reservoirs under uncertainty.\n Potential well targets are classified by an opportunity index defined by a combination of rock and hydrocarbon flow properties as well as connected volumes above a minimum economic volume. Unsupervised learning techniques are applied to automate the search for alternative target areas, so-called hotspot regions. Supervised machine/learning models are used to predict infill well performance based on simulated and/or past production experience. A stochastic evaluation including all ensemble cases is used to capture uncertainty. Vertical, deviated, horizontal and multilateral wells are proposed to optimally target single or connect to multiple hotspot regions under technical and economic constraints.\n A structured workflow design is applied to a multi-layered/stacked reservoir model. Subsurface uncertainties are described and captured by multiple model realizations, which are constrained in areas of historical wells. An infill well program for a multi-layered/stacked reservoir is defined for incremental production increase under economic constraints.\n This work shows how robust well location and design builds on the full ensemble of cases with a high degree of automation using analytics and machine-learning techniques. Both production and economic targets are calculated and compared to a reference case for robust solution verification and probability of success.\n In conclusion, an overall reservoir-driven field development strategy is required for efficient execution. However, automation is well applicable to repetitive workflow steps which includes hotspot search in an ensemble of validated reservoir models.\n This work presents an integrated, intelligent solution for informed decision making on infill drilling locations and refined well design. Higher degree of automation with embedded intelligence are discussed from case generation to hotspot identification. Aspects of model calibration in a producing field environment are addressed.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"203 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207899-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Effective well placement and design planning accounts for subsurface uncertainties to estimate production and economic outcomes. Reservoir modelling and simulation workflows build on ensemble approaches to manage uncertainties for production forecasting. Ensemble generation and interpretation requires a higher degree of automation analytics and artificial intelligence for fast value extraction and decision support. This work develops practical intelligent workflow steps for a robust infill well placement and design scenario in multi-layered/stacked reservoirs under uncertainty.
Potential well targets are classified by an opportunity index defined by a combination of rock and hydrocarbon flow properties as well as connected volumes above a minimum economic volume. Unsupervised learning techniques are applied to automate the search for alternative target areas, so-called hotspot regions. Supervised machine/learning models are used to predict infill well performance based on simulated and/or past production experience. A stochastic evaluation including all ensemble cases is used to capture uncertainty. Vertical, deviated, horizontal and multilateral wells are proposed to optimally target single or connect to multiple hotspot regions under technical and economic constraints.
A structured workflow design is applied to a multi-layered/stacked reservoir model. Subsurface uncertainties are described and captured by multiple model realizations, which are constrained in areas of historical wells. An infill well program for a multi-layered/stacked reservoir is defined for incremental production increase under economic constraints.
This work shows how robust well location and design builds on the full ensemble of cases with a high degree of automation using analytics and machine-learning techniques. Both production and economic targets are calculated and compared to a reference case for robust solution verification and probability of success.
In conclusion, an overall reservoir-driven field development strategy is required for efficient execution. However, automation is well applicable to repetitive workflow steps which includes hotspot search in an ensemble of validated reservoir models.
This work presents an integrated, intelligent solution for informed decision making on infill drilling locations and refined well design. Higher degree of automation with embedded intelligence are discussed from case generation to hotspot identification. Aspects of model calibration in a producing field environment are addressed.