K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer
{"title":"An Efficient Neural Network-Based Prediction Scheme for Heterogeneous Networks","authors":"K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer","doi":"10.4018/ijskd.2020040104","DOIUrl":null,"url":null,"abstract":"Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service(QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction. Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction.Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas.Additionally,theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers.BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation,allrandomly.Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture.Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused.Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints.Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation. Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"24 1","pages":"63-76"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2020040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
一种高效的基于神经网络的异构网络预测方案
Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service_ (QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction。Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction。Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas。Additionally、theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers。BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation、allrandomly。Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture。Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused。Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints。Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation。Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。