Ship Type Recognition using Deep Learning with FFT Spectrums of Audio Signals

M. E. Yıldırım
{"title":"Ship Type Recognition using Deep Learning with FFT Spectrums of Audio Signals","authors":"M. E. Yıldırım","doi":"10.31202/ecjse.1149363","DOIUrl":null,"url":null,"abstract":"Ship type recognition has gained serious interest in applications required in the maritime sector. A large amount of the studies in literature focused on the use of images taken by shore cameras, radar images, and audio features. In the case of image-based recognition, a very large number and variety of ship images must be collected. In the case of audio-based recognition, systems may suffer from the background noise. In this study, we present a method, which uses the frequency domain characteristics with an image-based deep learning network. The method computes the fast Fourier transform of sound records of ships and generates the frequency vs magnitude graphs as images. Next, the images are given into the ResNet50 network for classification. A public dataset with nine different ship types is used to test the performance of the proposed method. According to the results, we obtained a 99% accuracy rate.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31202/ecjse.1149363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ship type recognition has gained serious interest in applications required in the maritime sector. A large amount of the studies in literature focused on the use of images taken by shore cameras, radar images, and audio features. In the case of image-based recognition, a very large number and variety of ship images must be collected. In the case of audio-based recognition, systems may suffer from the background noise. In this study, we present a method, which uses the frequency domain characteristics with an image-based deep learning network. The method computes the fast Fourier transform of sound records of ships and generates the frequency vs magnitude graphs as images. Next, the images are given into the ResNet50 network for classification. A public dataset with nine different ship types is used to test the performance of the proposed method. According to the results, we obtained a 99% accuracy rate.
基于音频信号FFT频谱的深度学习船型识别
船型识别在海事领域的应用中引起了极大的兴趣。文献中大量的研究集中在利用海岸相机拍摄的图像、雷达图像和音频特征。在基于图像的船舶识别中,需要采集数量庞大、种类繁多的船舶图像。在基于音频的识别中,系统可能会受到背景噪声的影响。在本研究中,我们提出了一种基于图像的深度学习网络的频域特征方法。该方法对舰船声记录进行快速傅里叶变换,生成频率与幅值的图像。然后,将图像输入ResNet50网络进行分类。使用包含九种不同船型的公共数据集来测试所提出方法的性能。根据结果,我们获得了99%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信