Jay Chen, Diwaker Gupta, K. Vishwanath, A. Snoeren, Amin Vahdat
{"title":"Routing in an Internet-scale network emulator","authors":"Jay Chen, Diwaker Gupta, K. Vishwanath, A. Snoeren, Amin Vahdat","doi":"10.1109/MASCOT.2004.1348282","DOIUrl":null,"url":null,"abstract":"One of the primary challenges facing scalable network emulation and simulation is the overhead of storing network-wide routing tables or computing appropriate routes on a per-packet basis. We present an approach to routing table calculation and storage based on spanning tree construction that provides an order of magnitude reduction in routing table size for Internet-like topologies. In our approach, we maintain a variable number of spanning trees for a given topology and choose the path between two hosts in each tree, choosing the shortest. We also populate offline a negative cache of actual shortest paths for source-destination pairs - typically a few percent of the total - where the lookups result in sub-optimal routes. We have implemented our technique in a popular network emulator, ModelNet, and show that our enhanced version can emulate Internet topologies 10-100 times larger than previously possible.","PeriodicalId":32394,"journal":{"name":"Performance","volume":"1 1","pages":"275-283"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2004.1348282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
One of the primary challenges facing scalable network emulation and simulation is the overhead of storing network-wide routing tables or computing appropriate routes on a per-packet basis. We present an approach to routing table calculation and storage based on spanning tree construction that provides an order of magnitude reduction in routing table size for Internet-like topologies. In our approach, we maintain a variable number of spanning trees for a given topology and choose the path between two hosts in each tree, choosing the shortest. We also populate offline a negative cache of actual shortest paths for source-destination pairs - typically a few percent of the total - where the lookups result in sub-optimal routes. We have implemented our technique in a popular network emulator, ModelNet, and show that our enhanced version can emulate Internet topologies 10-100 times larger than previously possible.