Classification-Based Adaptive Web Scraper

S. UjwalB.V., Bharat Gaind, Abhishek Kundu, Anusha K. Holla, Mukund Rungta
{"title":"Classification-Based Adaptive Web Scraper","authors":"S. UjwalB.V., Bharat Gaind, Abhishek Kundu, Anusha K. Holla, Mukund Rungta","doi":"10.1109/ICMLA.2017.0-168","DOIUrl":null,"url":null,"abstract":"Web scraping is an important problem in computer science. The problem with the commonly-used position or structure-based web scraping tools is that they need to be manually reconfigured as soon as the structure of the web page changes. In this paper, we try to solve this problem of information extraction for web pages consisting of repetitive blocks. We extract these blocks and their constituent attributes, using a novel classification-based approach. Our approach gives high accuracy when used to extract product-offers from an offer-aggregator website. It is also highly adaptive to the changing structure of a website.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"34 1","pages":"125-132"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Web scraping is an important problem in computer science. The problem with the commonly-used position or structure-based web scraping tools is that they need to be manually reconfigured as soon as the structure of the web page changes. In this paper, we try to solve this problem of information extraction for web pages consisting of repetitive blocks. We extract these blocks and their constituent attributes, using a novel classification-based approach. Our approach gives high accuracy when used to extract product-offers from an offer-aggregator website. It is also highly adaptive to the changing structure of a website.
基于分类的自适应Web Scraper
网络抓取是计算机科学中的一个重要问题。常用的基于位置或结构的网页抓取工具的问题是,一旦网页的结构发生变化,它们就需要手动重新配置。在本文中,我们试图解决由重复块组成的网页的信息提取问题。我们使用一种新的基于分类的方法提取这些块及其组成属性。当用于从报价聚合器网站提取产品报价时,我们的方法具有很高的准确性。它还能高度适应网站结构的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信