Stochasticity may generate coherent motion in bird flocks.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Andy M Reynolds
{"title":"Stochasticity may generate coherent motion in bird flocks.","authors":"Andy M Reynolds","doi":"10.1088/1478-3975/acbad7","DOIUrl":null,"url":null,"abstract":"<p><p>Murmurations along with other forms of flocking have come to epitomize collective animal movements. Most studies into these stunning aerial displays have aimed to understand how coherent motion may emerge from simple behavioral rules and behavioral correlations. These studies may now need revision because recently it has been shown that flocking birds, like swarming insects, behave on the average as if they are trapped in elastic potential wells. Here I show, somewhat paradoxically, how coherent motion can be generated by variations in the intensity of multiplicative noise which causes the shape of a potential well to change, thereby shifting the positions and strengths of centres of attraction. Each bird, irrespective of its position in the flock will respond in a similar way to such changes, giving the impression that the flock behaves as one, and typically resulting in scale-free correlations. I thereby show how correlations can be an emergent property of noisy, confining potential wells. I also show how such wells can lead to high density borders, a characteristic of flocks, and I show how they can account for the complex patterns of collective escape patterns of starling flocks under predation. I suggest swarming and flocking do not constitute two distinctly different kinds of collective behavior but rather that insects are residing in relatively stable potential wells whilst birds are residing in unstable potential wells. It is shown how, dependent upon individual perceptual capabilities, bird flocks can be poised at criticality.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/acbad7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Murmurations along with other forms of flocking have come to epitomize collective animal movements. Most studies into these stunning aerial displays have aimed to understand how coherent motion may emerge from simple behavioral rules and behavioral correlations. These studies may now need revision because recently it has been shown that flocking birds, like swarming insects, behave on the average as if they are trapped in elastic potential wells. Here I show, somewhat paradoxically, how coherent motion can be generated by variations in the intensity of multiplicative noise which causes the shape of a potential well to change, thereby shifting the positions and strengths of centres of attraction. Each bird, irrespective of its position in the flock will respond in a similar way to such changes, giving the impression that the flock behaves as one, and typically resulting in scale-free correlations. I thereby show how correlations can be an emergent property of noisy, confining potential wells. I also show how such wells can lead to high density borders, a characteristic of flocks, and I show how they can account for the complex patterns of collective escape patterns of starling flocks under predation. I suggest swarming and flocking do not constitute two distinctly different kinds of collective behavior but rather that insects are residing in relatively stable potential wells whilst birds are residing in unstable potential wells. It is shown how, dependent upon individual perceptual capabilities, bird flocks can be poised at criticality.

随机性可能在鸟群中产生相干运动。
杂语和其他形式的群集已经成为动物集体运动的缩影。对这些令人惊叹的空中表演的大多数研究旨在了解简单的行为规则和行为相关性如何产生连贯运动。这些研究现在可能需要修正,因为最近有研究表明,成群的鸟类,就像成群的昆虫一样,平均而言,它们的行为就像被困在弹性势井中一样。在这里,我展示了,多少有点矛盾的是,如何通过引起势阱形状改变的乘法噪声强度的变化来产生相干运动,从而改变了吸引力中心的位置和强度。每只鸟,不管它在鸟群中的位置如何,都会以相似的方式对这种变化做出反应,给人一种鸟群行为一致的印象,通常会产生无尺度的相关性。因此,我展示了相关性如何成为嘈杂的限制性势井的突现特性。我还展示了这些井如何导致高密度边界,这是鸟群的一个特征,我还展示了它们如何解释椋鸟群在被捕食时集体逃跑的复杂模式。我认为蜂群和群集并不是两种明显不同的集体行为,而是昆虫生活在相对稳定的势井中,而鸟类生活在不稳定的势井中。它显示了如何依赖于个体的感知能力,鸟群可以在临界状态下保持平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信