State Parameterization Basic Spline Functions for Trajectory Optimization: دوال سبلاين الاساسية لمعلمات الحالة لأمثلية المسار

Maha Delphi, Suha Shihab
{"title":"State Parameterization Basic Spline Functions for Trajectory Optimization: دوال سبلاين الاساسية لمعلمات الحالة لأمثلية المسار","authors":"Maha Delphi, Suha Shihab","doi":"10.26389/ajsrp.s270519","DOIUrl":null,"url":null,"abstract":"  An important type of basic functions named basis spline (B-spline) is provided a simpler approximate and more stable approach to solve problems in optimal control. Furthermore, it can be proved that with special knot sequence, the B-spline basis are exactly Bernstein polynomials. The approximate technique is based on state variable is approximate as a linear combination of B-spline then anon linear optimization problem is obtained and the optimal coefficients are calculated using an iterative algorithm. Two different examples are tested using the proposed algorithm.    ","PeriodicalId":16473,"journal":{"name":"Journal of natural sciences, life and applied sciences","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of natural sciences, life and applied sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26389/ajsrp.s270519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

  An important type of basic functions named basis spline (B-spline) is provided a simpler approximate and more stable approach to solve problems in optimal control. Furthermore, it can be proved that with special knot sequence, the B-spline basis are exactly Bernstein polynomials. The approximate technique is based on state variable is approximate as a linear combination of B-spline then anon linear optimization problem is obtained and the optimal coefficients are calculated using an iterative algorithm. Two different examples are tested using the proposed algorithm.    
状态参数化基本样条函数轨迹优化:دوالسبلاينالاساسيةلمعلماتالحالةلأمثليةالمسار
基样条(b样条)是一类重要的基本函数,为解决最优控制问题提供了一种更简单、更稳定的近似方法。进一步证明了在特殊结点序列下,b样条基完全是Bernstein多项式。近似方法是将状态变量近似为b样条的线性组合,得到非线性优化问题,并采用迭代算法计算最优系数。用该算法对两个不同的实例进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信