Search for extremity zones with discrete mathematical analysis algorithms to identify risks when drilling based on geophysical data

IF 0.7 Q4 GEOSCIENCES, MULTIDISCIPLINARY
S. Bogoutdinov, Anastasiya Odintsova, A. Pirogova
{"title":"Search for extremity zones with discrete mathematical analysis algorithms to identify risks when drilling based on geophysical data","authors":"S. Bogoutdinov, Anastasiya Odintsova, A. Pirogova","doi":"10.2205/2022es000796","DOIUrl":null,"url":null,"abstract":"Despite the impressive list of examples of the integration of pattern recognition theory into various activities in the development of oil and gas fields, the authors propose a fundamentally new approach to the use of artificial intelligence. The paper considers in detail the algorithm for searching for extremity zones, based on discrete mathematical analysis (DMA), as applied to the problem of identifying geological hazards. The application of the method is shown on models of the physical properties of rocks reconstructed from seismic data. Potentially, it can also be applied directly to the wave seismic field to identify objects.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"36 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2205/2022es000796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Despite the impressive list of examples of the integration of pattern recognition theory into various activities in the development of oil and gas fields, the authors propose a fundamentally new approach to the use of artificial intelligence. The paper considers in detail the algorithm for searching for extremity zones, based on discrete mathematical analysis (DMA), as applied to the problem of identifying geological hazards. The application of the method is shown on models of the physical properties of rocks reconstructed from seismic data. Potentially, it can also be applied directly to the wave seismic field to identify objects.
使用离散数学分析算法搜索极端区域,以便根据地球物理数据识别钻井时的风险
尽管将模式识别理论整合到油气田开发的各种活动中的例子令人印象深刻,但作者提出了一种使用人工智能的全新方法。本文详细研究了基于离散数学分析(DMA)的极值带搜索算法在地质灾害识别中的应用。该方法在地震资料重建的岩石物性模型上得到了应用。潜在地,它也可以直接应用于波地震场来识别物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Earth Sciences
Russian Journal of Earth Sciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
15.40%
发文量
41
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信