Realtime Decomposition of Site-Measured Solar Irradiance Using Machine Learning for Bifacial System Performance Characterization

A. Dobos, J. Obrecht, Zoe Defreitas
{"title":"Realtime Decomposition of Site-Measured Solar Irradiance Using Machine Learning for Bifacial System Performance Characterization","authors":"A. Dobos, J. Obrecht, Zoe Defreitas","doi":"10.1109/PVSC43889.2021.9518419","DOIUrl":null,"url":null,"abstract":"This work presents a method for decomposing realtime on-site measured plane of array (POA) and global horizontal (GHI) irradiance from pyranometers into beam and diffuse components. A machine learning method is applied in conjunction with typical metereological year (TMY) irradiance data to facilitate reliable irradiance decomposition of five minute measured data, a regime in which conventional decomposition methods like GTI-DIRINT sometimes struggle. The approach is combined with view factor models of rear side irradiance for bifacial systems to reliably calculate performance ratio and other metrics. Validation of the method on bifacial utility-scale solar power plant data shows credible results.","PeriodicalId":6788,"journal":{"name":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","volume":"33 1","pages":"1405-1408"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC43889.2021.9518419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a method for decomposing realtime on-site measured plane of array (POA) and global horizontal (GHI) irradiance from pyranometers into beam and diffuse components. A machine learning method is applied in conjunction with typical metereological year (TMY) irradiance data to facilitate reliable irradiance decomposition of five minute measured data, a regime in which conventional decomposition methods like GTI-DIRINT sometimes struggle. The approach is combined with view factor models of rear side irradiance for bifacial systems to reliably calculate performance ratio and other metrics. Validation of the method on bifacial utility-scale solar power plant data shows credible results.
利用机器学习进行双面系统性能表征的现场测量太阳辐照度实时分解
本文提出了一种将热辐射计实时现场测量的阵列平面(POA)和全球水平(GHI)辐照度分解为波束和漫射分量的方法。机器学习方法与典型的气象年(TMY)辐照度数据相结合,以促进对五分钟测量数据的可靠辐照度分解,这是GTI-DIRINT等传统分解方法有时难以实现的。该方法与双面系统后侧面辐照度的视因子模型相结合,可以可靠地计算出性能比和其他指标。对双面太阳能电站数据进行了验证,结果可信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信