Analyzing MPI-3.0 Process-Level Shared Memory: A Case Study with Stencil Computations

Xiaomin Zhu, Junchao Zhang, Kazutomo Yoshii, Shigang Li, Yunquan Zhang, P. Balaji
{"title":"Analyzing MPI-3.0 Process-Level Shared Memory: A Case Study with Stencil Computations","authors":"Xiaomin Zhu, Junchao Zhang, Kazutomo Yoshii, Shigang Li, Yunquan Zhang, P. Balaji","doi":"10.1109/CCGrid.2015.131","DOIUrl":null,"url":null,"abstract":"The recently released MPI-3.0 standard introduced a process-level shared-memory interface which enables processes within the same node to have direct load/store access to each others' memory. Such an interface allows applications to declare data structures that are shared by multiple MPI processes on the node. In this paper, we study the capabilities and performance implications of using MPI-3.0 shared memory, in the context of a five-point stencil computation. Our analysis reveals that the use of MPI-3.0 shared memory has several unforeseen performance implications including disrupting certain compiler optimizations and incorrectly using suboptimal page sizes inside the OS. Based on this analysis, we propose several methodologies for working around these issues and improving communication performance by 40-85% compared to the current MPI-1.0 based approach.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"15 1","pages":"1099-1106"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The recently released MPI-3.0 standard introduced a process-level shared-memory interface which enables processes within the same node to have direct load/store access to each others' memory. Such an interface allows applications to declare data structures that are shared by multiple MPI processes on the node. In this paper, we study the capabilities and performance implications of using MPI-3.0 shared memory, in the context of a five-point stencil computation. Our analysis reveals that the use of MPI-3.0 shared memory has several unforeseen performance implications including disrupting certain compiler optimizations and incorrectly using suboptimal page sizes inside the OS. Based on this analysis, we propose several methodologies for working around these issues and improving communication performance by 40-85% compared to the current MPI-1.0 based approach.
MPI-3.0进程级共享内存分析:以模板计算为例
最近发布的MPI-3.0标准引入了进程级共享内存接口,该接口允许同一节点内的进程直接访问彼此的内存。这样的接口允许应用程序声明由节点上的多个MPI进程共享的数据结构。在本文中,我们研究了在五点模板计算的背景下使用MPI-3.0共享内存的能力和性能影响。我们的分析表明,使用MPI-3.0共享内存有几个不可预见的性能影响,包括破坏某些编译器优化和在操作系统中错误地使用次优页面大小。基于这一分析,我们提出了几种方法来解决这些问题,并与当前基于MPI-1.0的方法相比,将通信性能提高40-85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信