Liming Zeng, Liwang Zeng, Yu Wang, Zhengnan Xie, Minhua Zhao, Jie Chen, Xiaoxue Ye, Weiwei Tie, Meiying Li, Sang Shang, Libo Tian, Jian Zeng, Wei Hu
{"title":"Identification and expression of the CCO family during development, ripening and stress response in banana.","authors":"Liming Zeng, Liwang Zeng, Yu Wang, Zhengnan Xie, Minhua Zhao, Jie Chen, Xiaoxue Ye, Weiwei Tie, Meiying Li, Sang Shang, Libo Tian, Jian Zeng, Wei Hu","doi":"10.1007/s10709-023-00178-w","DOIUrl":null,"url":null,"abstract":"<p><p>Plant hormone abscisic acid (ABA) plays an important role in plant growth, development and response to biotic / abiotic stressors. Thus, it is necessary to investigate the crucial genes associated with ABA synthesis. Currently, the carotenoid cleavage oxygenases (CCOs) family that function as the key step for ABA synthesis are not well understood in banana. In this study, 13 MaCCO genes and 12 MbCCO genes, divided into NCED subgroup and CCD subgroup, were identified from the banana genome, and their evolutionary relationship, protein motifs, and gene structures were also determined. Transcriptomic analysis suggested the involvement of CCO genes in banana development, ripening, and response to abiotic and biotic stressors, and homologous gene pairs showed homoeologue expression bias in the A or B subgenome. Our results identified MaNCED3A, MaCCD1, and MbNCED3B as the genes with the highest expression during fruit development and ripening. MaNCED5 / MbNCED5 and MaNCED9A might respond to abiotic stress, and MaNCED3A, 3B, 6 A, 9 A, and MbNCED9A showed transcriptional changes that could be a response to Foc4 infection. These findings may contribute to the characterization of key enzymes involved in ABA biosynthesis, as well as to identify potential targets for the genetic improvement of banana.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-023-00178-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant hormone abscisic acid (ABA) plays an important role in plant growth, development and response to biotic / abiotic stressors. Thus, it is necessary to investigate the crucial genes associated with ABA synthesis. Currently, the carotenoid cleavage oxygenases (CCOs) family that function as the key step for ABA synthesis are not well understood in banana. In this study, 13 MaCCO genes and 12 MbCCO genes, divided into NCED subgroup and CCD subgroup, were identified from the banana genome, and their evolutionary relationship, protein motifs, and gene structures were also determined. Transcriptomic analysis suggested the involvement of CCO genes in banana development, ripening, and response to abiotic and biotic stressors, and homologous gene pairs showed homoeologue expression bias in the A or B subgenome. Our results identified MaNCED3A, MaCCD1, and MbNCED3B as the genes with the highest expression during fruit development and ripening. MaNCED5 / MbNCED5 and MaNCED9A might respond to abiotic stress, and MaNCED3A, 3B, 6 A, 9 A, and MbNCED9A showed transcriptional changes that could be a response to Foc4 infection. These findings may contribute to the characterization of key enzymes involved in ABA biosynthesis, as well as to identify potential targets for the genetic improvement of banana.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.