Local versions of sum-of-norms clustering

IF 1.9 Q1 MATHEMATICS, APPLIED
Alexander Dunlap, J. Mourrat
{"title":"Local versions of sum-of-norms clustering","authors":"Alexander Dunlap, J. Mourrat","doi":"10.1137/21m1448732","DOIUrl":null,"url":null,"abstract":". Sum-of-norms clustering is a convex optimization problem whose solution can be used for the clustering of multivariate data. We propose and study a localized version of this method, and show in particular that it can separate arbitrarily close balls in the stochastic ball model. More precisely, we prove a quantitative bound on the error incurred in the clustering of disjoint connected sets. Our bound is expressed in terms of the number of datapoints and the localization length of the functional.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"11 1","pages":"1250-1271"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1448732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

. Sum-of-norms clustering is a convex optimization problem whose solution can be used for the clustering of multivariate data. We propose and study a localized version of this method, and show in particular that it can separate arbitrarily close balls in the stochastic ball model. More precisely, we prove a quantitative bound on the error incurred in the clustering of disjoint connected sets. Our bound is expressed in terms of the number of datapoints and the localization length of the functional.
规范和聚类的局部版本
. 范数和聚类是一个凸优化问题,其解可用于多变量数据的聚类。我们提出并研究了该方法的一个局部化版本,并特别证明了它可以在随机球模型中分离任意接近的球。更准确地说,我们证明了不相交连通集聚类误差的定量界。我们的界是用数据点的个数和泛函的局部化长度来表示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信