Christopher Venske, A. Mohamed, A. Shaban, Nelson Maan, Dr. Colin Hill, Michael. Carroll, R. Findlay
{"title":"Organic Oil Recovery - Resident Microbial Enhanced Production Pilot in Bahrain","authors":"Christopher Venske, A. Mohamed, A. Shaban, Nelson Maan, Dr. Colin Hill, Michael. Carroll, R. Findlay","doi":"10.2118/204884-ms","DOIUrl":null,"url":null,"abstract":"\n Tatweer Petroleum has been involved in a Pilot study to determine the efficacy of Organic Oil Recovery (OOR), a unique form of microbial enhanced oil recovery as a means of maximising oil recovery from its Rubble reservoir within the Awali field.\n OOR harnesses microbial life already present in an oil-bearing reservoir to improve oil recovery through changes in interfacial tensions, which in the case of Rubble will increase the heavy oil's mobility and improve recovery rates and reservoir wettability. These changes could increase recoverable reserves and extend field life through improved oil recovery with negligible topsides modifications. The Pilot injection is implemented by injecting a specific nutrient blend directly at the wellhead with ordinary pumping equipment. The well is then shut-in for an incubation period and thereafter returned to production.\n In Tatweer Petroleum's Awali field the Rubble reservoir is one of the shallowest oil reservoirs in the Bahrain and the first oil discovery in the Gulf Cooperation Council (GCC) region. The reservoir can be found at depths of around 1400 – 1900 ft. During initial laboratory testing of the Rubble target wells the reservoir showed a diverse and abundant resident ecology which has been proven capable of undergoing the necessary characteristic changes to facilitate enhanced production from the target wells. The Pilot test on one of these wells, called Well (A) within this paper, took place in July 2020 and due to this process, the ecology of this well showed these same changes in characteristics in the reservoir along with an associated oil response. The full method of implementation of the Pilot test will also be discussed in detail and will include any challenges and/or successes in this area. The initial state ecology reports of Well (A) are demonstrated and compared to that of post-Pilot test ecology. We also present the production figures for the well prior to and post the Pilot implementation. A correlation will be demonstrated between changes in ecology and an increase in production.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":"24 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204884-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tatweer Petroleum has been involved in a Pilot study to determine the efficacy of Organic Oil Recovery (OOR), a unique form of microbial enhanced oil recovery as a means of maximising oil recovery from its Rubble reservoir within the Awali field.
OOR harnesses microbial life already present in an oil-bearing reservoir to improve oil recovery through changes in interfacial tensions, which in the case of Rubble will increase the heavy oil's mobility and improve recovery rates and reservoir wettability. These changes could increase recoverable reserves and extend field life through improved oil recovery with negligible topsides modifications. The Pilot injection is implemented by injecting a specific nutrient blend directly at the wellhead with ordinary pumping equipment. The well is then shut-in for an incubation period and thereafter returned to production.
In Tatweer Petroleum's Awali field the Rubble reservoir is one of the shallowest oil reservoirs in the Bahrain and the first oil discovery in the Gulf Cooperation Council (GCC) region. The reservoir can be found at depths of around 1400 – 1900 ft. During initial laboratory testing of the Rubble target wells the reservoir showed a diverse and abundant resident ecology which has been proven capable of undergoing the necessary characteristic changes to facilitate enhanced production from the target wells. The Pilot test on one of these wells, called Well (A) within this paper, took place in July 2020 and due to this process, the ecology of this well showed these same changes in characteristics in the reservoir along with an associated oil response. The full method of implementation of the Pilot test will also be discussed in detail and will include any challenges and/or successes in this area. The initial state ecology reports of Well (A) are demonstrated and compared to that of post-Pilot test ecology. We also present the production figures for the well prior to and post the Pilot implementation. A correlation will be demonstrated between changes in ecology and an increase in production.