MULTIPLE SCATTERING OF WAVES BY COMPLEX OBJECTS USING HYBRID METHOD OF T-MATRIX AND FOLDY-LAX EQUATIONS USING VECTOR SPHERICAL WAVES AND VECTOR SPHEROIDAL WAVES

Huanting Huang, L. Tsang, A. Colliander, R. Shah, Xiaolan Xu, S. Yueh
{"title":"MULTIPLE SCATTERING OF WAVES BY COMPLEX OBJECTS USING HYBRID METHOD OF T-MATRIX AND FOLDY-LAX EQUATIONS USING VECTOR SPHERICAL WAVES AND VECTOR SPHEROIDAL WAVES","authors":"Huanting Huang, L. Tsang, A. Colliander, R. Shah, Xiaolan Xu, S. Yueh","doi":"10.2528/pier20080409","DOIUrl":null,"url":null,"abstract":"In this paper, we develop numerical methods for using vector spherical and spheroidal waves in the hybrid method to calculate the multiple scattering of objects of complex shapes, based on the rigorous solutions of Maxwell equations in the form of Foldy-Lax multiple scattering equations (FL). The steps in the hybrid method are: (1) calculating the T -matrix of each single object using vector spherical/spheroidal waves and (2) vector spherical/spheroidal waves addition theorem. We utilize the commercial software HFSS to calculate the scattered fields of a complex object on the circumscribing sphere or spheroid for multiple incidences and polarizations. The T -matrix of spherical waves or spheroidal waves are then obtained from these scattered fields. To perform wave transformations (i.e., addition theorem) for vector spherical/spheroidal waves, we develop robust numerical methods. Numerical results are illustrated for T-matrices and numerical vector addition theorems.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier20080409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we develop numerical methods for using vector spherical and spheroidal waves in the hybrid method to calculate the multiple scattering of objects of complex shapes, based on the rigorous solutions of Maxwell equations in the form of Foldy-Lax multiple scattering equations (FL). The steps in the hybrid method are: (1) calculating the T -matrix of each single object using vector spherical/spheroidal waves and (2) vector spherical/spheroidal waves addition theorem. We utilize the commercial software HFSS to calculate the scattered fields of a complex object on the circumscribing sphere or spheroid for multiple incidences and polarizations. The T -matrix of spherical waves or spheroidal waves are then obtained from these scattered fields. To perform wave transformations (i.e., addition theorem) for vector spherical/spheroidal waves, we develop robust numerical methods. Numerical results are illustrated for T-matrices and numerical vector addition theorems.
利用矢量球波和矢量球波的t矩阵和折叠松弛方程混合方法研究复杂物体对波的多重散射
本文以折叠式多重散射方程(Foldy-Lax multiple scattering equations, FL)的Maxwell方程的严格解为基础,发展了用矢量球面波和球面波混合方法计算复杂形状物体多重散射的数值方法。混合方法的步骤是:(1)利用矢量球/球面波计算每个单个物体的T矩阵;(2)矢量球/球面波加法定理。利用商业软件HFSS计算了复杂物体在边界球面或椭球面上的多次入射和极化散射场。然后从这些散射场得到球面波或球面波的T矩阵。为了对矢量球面/球面波进行波变换(即加法定理),我们开发了鲁棒的数值方法。给出了t矩阵和数值向量加法定理的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信