Illumination compensation method for local matching Gabor face classifier

C. Pérez, L. Castillo, Leonardo A. Cament
{"title":"Illumination compensation method for local matching Gabor face classifier","authors":"C. Pérez, L. Castillo, Leonardo A. Cament","doi":"10.1109/ISOT.2010.5687330","DOIUrl":null,"url":null,"abstract":"Illumination compensation has proven to be crucial in face detection and face recognition. Several methods for illumination compensation have been developed and tested on the face recognition task using international available face databases. Among the methods with best results are the Discrete Cosine Transform (DCT), Local Normalization (LN) and Self-Quotient Image (SQI). Most of these methods have been applied with great success in face recognition using a principal component classifier (PCA). In the past few years, Local Matching Gabor (LMG) classifiers have shown great success in face classification relative to other classifiers. In this work we optimize several illumination compensation methods using the LMG face classifier. We use ge netic algorithms as the optimization tool. We test our results on the FERET international face database. Results show that face recognition can be significantly improved by illumination compensation methods. The best results are obtained with the optimized LN method which yields a 31% reduction in the total number of errors in the FERET database.","PeriodicalId":91154,"journal":{"name":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","volume":"54 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2010.5687330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Illumination compensation has proven to be crucial in face detection and face recognition. Several methods for illumination compensation have been developed and tested on the face recognition task using international available face databases. Among the methods with best results are the Discrete Cosine Transform (DCT), Local Normalization (LN) and Self-Quotient Image (SQI). Most of these methods have been applied with great success in face recognition using a principal component classifier (PCA). In the past few years, Local Matching Gabor (LMG) classifiers have shown great success in face classification relative to other classifiers. In this work we optimize several illumination compensation methods using the LMG face classifier. We use ge netic algorithms as the optimization tool. We test our results on the FERET international face database. Results show that face recognition can be significantly improved by illumination compensation methods. The best results are obtained with the optimized LN method which yields a 31% reduction in the total number of errors in the FERET database.
局部匹配Gabor人脸分类器的光照补偿方法
光照补偿在人脸检测和识别中起着至关重要的作用。利用国际上可用的人脸数据库,已经开发了几种照明补偿方法并对人脸识别任务进行了测试。其中效果最好的方法是离散余弦变换(DCT)、局部归一化(LN)和自商图像(SQI)。这些方法大多在主成分分类器(PCA)的人脸识别中得到了成功的应用。近年来,局部匹配Gabor (Local Matching Gabor, LMG)分类器在人脸分类方面取得了巨大的成功。本文利用LMG人脸分类器对几种光照补偿方法进行了优化。我们使用遗传算法作为优化工具。我们在FERET国际人脸数据库上测试了我们的结果。结果表明,采用光照补偿方法可以显著提高人脸识别效果。优化后的LN方法得到了最好的结果,使FERET数据库的总误差减少了31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信