New Inequalities of Simpson’s type for differentiable functions via generalized convex function

IF 0.8 4区 数学 Q2 MATHEMATICS
Shan E. Farooq, Khurram Shabir, S. Qaisar, Farooq Ahmad, O. A. Almatroud
{"title":"New Inequalities of Simpson’s type for differentiable functions via generalized convex function","authors":"Shan E. Farooq, Khurram Shabir, S. Qaisar, Farooq Ahmad, O. A. Almatroud","doi":"10.5802/CRMATH.152","DOIUrl":null,"url":null,"abstract":"This article presents some new inequalities of Simpson’s type for differentiable functions by using (α,m)-convexity. Some results for concavity are also obtained. These new estimates improve on the previously known ones. Some applications for special means of real numbers are also provided. 2020 Mathematics Subject Classification. 26A15, 26A51, 26D10. Funding. This work was supported by the Higher Education Commission (Islamabad) thorough the National Research Program for Universities, Grant No. 7359/Punjab/NRPU/R&D/HEC/2017. Manuscript received 19th July 2020, revised 16th August 2020 and 21st October 2020, accepted 17th November 2020.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.152","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

This article presents some new inequalities of Simpson’s type for differentiable functions by using (α,m)-convexity. Some results for concavity are also obtained. These new estimates improve on the previously known ones. Some applications for special means of real numbers are also provided. 2020 Mathematics Subject Classification. 26A15, 26A51, 26D10. Funding. This work was supported by the Higher Education Commission (Islamabad) thorough the National Research Program for Universities, Grant No. 7359/Punjab/NRPU/R&D/HEC/2017. Manuscript received 19th July 2020, revised 16th August 2020 and 21st October 2020, accepted 17th November 2020.
广义凸函数可微函数的Simpson型新不等式
利用(α,m)-凸性给出了可微函数的几个新的Simpson型不等式。对于凹性也得到了一些结果。这些新的估计改进了以前已知的估计。给出了实数特殊手段的一些应用。2020数学学科分类。26A15, 26A51, 26D10。资金。这项工作得到了高等教育委员会(伊斯兰堡)通过国家大学研究计划的支持,拨款号7359/Punjab/NRPU/R&D/HEC/2017。稿件收到2020年7月19日,修改2020年8月16日和2020年10月21日,接受2020年11月17日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信