Object Removal and Inpainting from Image using Combined GANs

Jeongwon Pyo, Yuri Goncalves Rocha, Arpan Ghosh, Kwanghee Lee, Gun-Gyo In, Tae-Yong Kuc
{"title":"Object Removal and Inpainting from Image using Combined GANs","authors":"Jeongwon Pyo, Yuri Goncalves Rocha, Arpan Ghosh, Kwanghee Lee, Gun-Gyo In, Tae-Yong Kuc","doi":"10.23919/ICCAS50221.2020.9268330","DOIUrl":null,"url":null,"abstract":"As recent research on deep learning methods has been actively conducted, a number of deep learning methods have been proposed. In this paper, we propose a method of removing the desired object from an image using generative adversarial networks(GANs) structure. We composed the network in which two GANs are fused. The first GAN erases the target object from the input image, and the second GAN generates an image that fills the empty space with the background. Through this network, we can erase the desired object from the input image and get an image with the erased part filled with the background without any object detection method. We show that the removal of people and vehicles from images of roads using the CityScapes Dataset.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"55 1","pages":"1116-1119"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As recent research on deep learning methods has been actively conducted, a number of deep learning methods have been proposed. In this paper, we propose a method of removing the desired object from an image using generative adversarial networks(GANs) structure. We composed the network in which two GANs are fused. The first GAN erases the target object from the input image, and the second GAN generates an image that fills the empty space with the background. Through this network, we can erase the desired object from the input image and get an image with the erased part filled with the background without any object detection method. We show that the removal of people and vehicles from images of roads using the CityScapes Dataset.
使用组合gan从图像中去除和修复物体
随着近年来深度学习方法研究的积极开展,人们提出了许多深度学习方法。在本文中,我们提出了一种使用生成对抗网络(gan)结构从图像中去除所需对象的方法。我们构建了两个gan融合的网络。第一个GAN从输入图像中擦除目标对象,第二个GAN生成用背景填充空白区域的图像。通过该网络,我们可以在不使用任何目标检测方法的情况下,从输入图像中擦除所需要的目标,得到被擦除的部分与背景填充的图像。我们展示了使用城市景观数据集从道路图像中去除人和车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信