{"title":"Brief review of recent advances in understanding dark matter and dark energy","authors":"Eugene Oks","doi":"10.1016/j.newar.2021.101632","DOIUrl":null,"url":null,"abstract":"<div><p>Dark sector, constituting about 95% of the Universe, remains the subject of numerous studies. There are lots of models dealing with the cause of the effects assigned to “dark matter” and “dark energy”. This brief review is devoted to the <em>very recent</em><span><span><span> theoretical advances in these areas: only to the advances achieved in the last few years. For example, in section devoted to particle dark matter we overview recent publications on sterile neutrinos, self-interacting dark matter, dibarions (hexaquarks), dark matter from primordial “bubbles”, primordial black holes<span> as dark matter, axions escaping from neutron stars, and dark and usual matter interacting via the fifth dimension. We also overview the second flavor of hydrogen atoms: their existence was proven by analyzing atomic experiments and is also evidenced by the latest astrophysical observations of the 21 cm </span></span>spectral line<span> from the early Universe<span>. While discussing non-particle models of the cause of dark matter effects, we refer to modified Newtonian dynamics and modifications of the strong equivalence principles. We also consider exotic compact objects, primordial black holes, and retardation effects. Finally, we review recent studies on the cause of “dark energy effects”. Specifically, we cover two disputes that arose in 2019 and 2020 on whether the observations of </span></span></span>supernovas<span>, previously interpreted as the proof of the existence of dark energy, could have alternative explanations. Besides, we note a study of 2021, where dark energy is substituted by a new hypothetical type of dark matter having a magnetic-type interaction. We also refer to the recent model of a system of nonrelativistic neutral gravitating particles providing an alternative explanation of the entire dynamics of the Universe expansion – without introducing dark energy or new gravitational degrees of freedom.</span></span></p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"93 ","pages":"Article 101632"},"PeriodicalIF":11.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy Reviews","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387647321000191","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 27
Abstract
Dark sector, constituting about 95% of the Universe, remains the subject of numerous studies. There are lots of models dealing with the cause of the effects assigned to “dark matter” and “dark energy”. This brief review is devoted to the very recent theoretical advances in these areas: only to the advances achieved in the last few years. For example, in section devoted to particle dark matter we overview recent publications on sterile neutrinos, self-interacting dark matter, dibarions (hexaquarks), dark matter from primordial “bubbles”, primordial black holes as dark matter, axions escaping from neutron stars, and dark and usual matter interacting via the fifth dimension. We also overview the second flavor of hydrogen atoms: their existence was proven by analyzing atomic experiments and is also evidenced by the latest astrophysical observations of the 21 cm spectral line from the early Universe. While discussing non-particle models of the cause of dark matter effects, we refer to modified Newtonian dynamics and modifications of the strong equivalence principles. We also consider exotic compact objects, primordial black holes, and retardation effects. Finally, we review recent studies on the cause of “dark energy effects”. Specifically, we cover two disputes that arose in 2019 and 2020 on whether the observations of supernovas, previously interpreted as the proof of the existence of dark energy, could have alternative explanations. Besides, we note a study of 2021, where dark energy is substituted by a new hypothetical type of dark matter having a magnetic-type interaction. We also refer to the recent model of a system of nonrelativistic neutral gravitating particles providing an alternative explanation of the entire dynamics of the Universe expansion – without introducing dark energy or new gravitational degrees of freedom.
期刊介绍:
New Astronomy Reviews publishes review articles in all fields of astronomy and astrophysics: theoretical, observational and instrumental. This international review journal is written for a broad audience of professional astronomers and astrophysicists.
The journal covers solar physics, planetary systems, stellar, galactic and extra-galactic astronomy and astrophysics, as well as cosmology. New Astronomy Reviews is also open for proposals covering interdisciplinary and emerging topics such as astrobiology, astroparticle physics, and astrochemistry.