{"title":"Solving Nonlinear Fractional Models in Superconductivity Using the q-Homotopy Analysis Transform Method","authors":"K. Ali, M. Maneea, M. Mohamed","doi":"10.1155/2023/6647375","DOIUrl":null,"url":null,"abstract":"The Ginzburg–Landau (GL) equation and the Ginzburg–Landau couple system are important models in the study of superconductivity and superfluidity. This study describes the q-homotopy analysis transform method (q-HATM) as a powerful technique for solving nonlinear problems, which has been successfully used with a set of mathematical models in physics, engineering, and biology. We apply the q-HATM to solve the Ginzburg–Landau equation and the Ginzburg–Landau coupled system and derive analytical solutions in terms of the q-series. Also, we investigate the convergence and accuracy of the obtained solutions. Our results show that q-HATM is a reliable and promising approach for solving nonlinear differential equations and provides a valuable tool for researchers in the field of superconductivity. Several graphs have been presented for the solutions obtained utilizing different levels of the fractional-order derivative and at various points in time.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6647375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
The Ginzburg–Landau (GL) equation and the Ginzburg–Landau couple system are important models in the study of superconductivity and superfluidity. This study describes the q-homotopy analysis transform method (q-HATM) as a powerful technique for solving nonlinear problems, which has been successfully used with a set of mathematical models in physics, engineering, and biology. We apply the q-HATM to solve the Ginzburg–Landau equation and the Ginzburg–Landau coupled system and derive analytical solutions in terms of the q-series. Also, we investigate the convergence and accuracy of the obtained solutions. Our results show that q-HATM is a reliable and promising approach for solving nonlinear differential equations and provides a valuable tool for researchers in the field of superconductivity. Several graphs have been presented for the solutions obtained utilizing different levels of the fractional-order derivative and at various points in time.