Deep and narrow binary content-addressable memories using FPGA-based BRAMs

Ameer Abdelhadi, G. Lemieux
{"title":"Deep and narrow binary content-addressable memories using FPGA-based BRAMs","authors":"Ameer Abdelhadi, G. Lemieux","doi":"10.1109/FPT.2014.7082808","DOIUrl":null,"url":null,"abstract":"Binary Content Addressable Memories (BCAMs) are massively parallel search engines capable of searching the entire memory space in a single clock cycle. BCAMs are used in a wide range of applications, such as memory management, networks, data compression, DSP, and databases. Due to the increasing amount of processed information, modern BCAM applications demand a deep searching space. However, traditional BCAM approaches in FPGAs suffer from storage inefficiency. In this paper, a novel and efficient technique for constructing deep and narrow BCAMs out of standard SRAM blocks in FPGAs is proposed. This technique is most efficient for deep and narrow CAMs since the BRAM consumption is exponential to pattern width. Using Altera's Stratix V device, traditional methods achieve up to 64K-entry BCAM while the proposed technique achieves up to 4M entries. For the 64K-entry test-case, traditional methods consume 43 times more ALMs and achieves only one-third of the Fmax. A fully parameterized Verilog implementation is available1. This implementation has been extensively tested using Altera's tools.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"7 1","pages":"318-321"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Binary Content Addressable Memories (BCAMs) are massively parallel search engines capable of searching the entire memory space in a single clock cycle. BCAMs are used in a wide range of applications, such as memory management, networks, data compression, DSP, and databases. Due to the increasing amount of processed information, modern BCAM applications demand a deep searching space. However, traditional BCAM approaches in FPGAs suffer from storage inefficiency. In this paper, a novel and efficient technique for constructing deep and narrow BCAMs out of standard SRAM blocks in FPGAs is proposed. This technique is most efficient for deep and narrow CAMs since the BRAM consumption is exponential to pattern width. Using Altera's Stratix V device, traditional methods achieve up to 64K-entry BCAM while the proposed technique achieves up to 4M entries. For the 64K-entry test-case, traditional methods consume 43 times more ALMs and achieves only one-third of the Fmax. A fully parameterized Verilog implementation is available1. This implementation has been extensively tested using Altera's tools.
基于fpga的bram的深度和窄二进制内容可寻址存储器
二进制内容可寻址存储器(BCAMs)是一种大规模并行搜索引擎,能够在一个时钟周期内搜索整个内存空间。bcam广泛应用于内存管理、网络、数据压缩、DSP和数据库等领域。由于处理的信息量越来越大,现代BCAM应用需要更大的搜索空间。然而,fpga中传统的BCAM方法存在存储效率低下的问题。本文提出了一种利用fpga中标准SRAM块构建深、窄bcam的新颖高效技术。这种技术对于深和窄的凸轮是最有效的,因为BRAM消耗是模式宽度的指数。使用Altera公司的Stratix V设备,传统方法可以实现高达64k次的BCAM,而该技术可以实现高达4M次的BCAM。对于64k条目的测试用例,传统方法消耗43倍的alm,只达到Fmax的三分之一。一个完全参数化的Verilog实现是可用的。这个实现已经使用Altera的工具进行了广泛的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信