Scalar curvature and deformations of complex structures

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Scarpa
{"title":"Scalar curvature and deformations of complex structures","authors":"C. Scarpa","doi":"10.1515/crelle-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract We study a system of equations on a compact complex manifold, that couples the scalar curvature of a Kähler metric with a spectral function of a first-order deformation of the complex structure. The system comes from an infinite-dimensional Kähler reduction, which is a hyperkähler reduction for a particular choice of the spectral function. The main tool for studying the system is a flat connection on the space of first-order deformations of the complex structure, that allows to obtain a formal complexification of the moment map equations. Using this connection, we describe a variational characterization of the equations, a Futaki invariant for the system, and a generalization of K-stability that is conjectured to characterize the existence of solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We study a system of equations on a compact complex manifold, that couples the scalar curvature of a Kähler metric with a spectral function of a first-order deformation of the complex structure. The system comes from an infinite-dimensional Kähler reduction, which is a hyperkähler reduction for a particular choice of the spectral function. The main tool for studying the system is a flat connection on the space of first-order deformations of the complex structure, that allows to obtain a formal complexification of the moment map equations. Using this connection, we describe a variational characterization of the equations, a Futaki invariant for the system, and a generalization of K-stability that is conjectured to characterize the existence of solutions.
复杂结构的标量曲率和变形
研究了紧复流形上的一个方程组,该方程组耦合了Kähler度规的标量曲率与复结构一阶变形的谱函数。该系统来自无限维Kähler约简,这是对谱函数的特定选择的hyperkähler约简。研究该系统的主要工具是在复杂结构的一阶变形空间上的平面连接,它允许得到弯矩映射方程的形式复化。利用这种联系,我们描述了方程的变分特征,系统的Futaki不变量,以及推测的k -稳定性的推广,以表征解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信