Mechanics-Based Modeling Approach for Rapid Prediction of Low Velocity Impact Damage in Composite Laminates

L. Borkowski, R. Kumar, U. Palliyaguru
{"title":"Mechanics-Based Modeling Approach for Rapid Prediction of Low Velocity Impact Damage in Composite Laminates","authors":"L. Borkowski, R. Kumar, U. Palliyaguru","doi":"10.2514/6.2020-0726","DOIUrl":null,"url":null,"abstract":"A mechanics-based modeling approach is developed to rapidly predict damage in polymer matrix composites resulting from a low velocity impact event. The approach is incorporated into a computer code that provides an efficient means to assess the damage resistance for a range of material systems, layup configurations, and impact scenarios. It is envisioned that the developed approach will aid in early design and analysis of composite structures where sizing and layup decisions must be made, and evaluating the feasibility of a large number of laminate configurations using numerical approaches such as finite element analysis (FEA) is prohibitively expensive. Therefore, the goal of the modeling approach is to predict the impact damage size given the laminate configuration and impact scenario. This information can then be used to determine the residual strength of the material. To be useful in such a context, the tool is designed to run quickly (<2 minutes) to allow a large number of design cases to be investigated. The results presented demonstrate that the model is capable of efficiently predicting low velocity impact damage size, shape, and location within an acceptable accuracy suitable for preliminary design and analysis of composite structures.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-0726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A mechanics-based modeling approach is developed to rapidly predict damage in polymer matrix composites resulting from a low velocity impact event. The approach is incorporated into a computer code that provides an efficient means to assess the damage resistance for a range of material systems, layup configurations, and impact scenarios. It is envisioned that the developed approach will aid in early design and analysis of composite structures where sizing and layup decisions must be made, and evaluating the feasibility of a large number of laminate configurations using numerical approaches such as finite element analysis (FEA) is prohibitively expensive. Therefore, the goal of the modeling approach is to predict the impact damage size given the laminate configuration and impact scenario. This information can then be used to determine the residual strength of the material. To be useful in such a context, the tool is designed to run quickly (<2 minutes) to allow a large number of design cases to be investigated. The results presented demonstrate that the model is capable of efficiently predicting low velocity impact damage size, shape, and location within an acceptable accuracy suitable for preliminary design and analysis of composite structures.
基于力学的复合材料层合板低速冲击损伤快速预测建模方法
本文提出了一种基于力学的建模方法,用于快速预测聚合物基复合材料在低速撞击事件中的损伤。该方法被整合到计算机代码中,提供了一种有效的方法来评估各种材料系统、分层配置和冲击场景的抗损伤性。预计开发的方法将有助于复合材料结构的早期设计和分析,其中必须做出尺寸和分层决策,并且使用有限元分析(FEA)等数值方法评估大量层压板配置的可行性是非常昂贵的。因此,建模方法的目标是预测在层压板结构和冲击场景下的冲击损伤尺寸。这些信息可以用来确定材料的残余强度。为了在这样的环境中发挥作用,该工具被设计为快速运行(<2分钟),以允许调查大量的设计案例。结果表明,该模型能够在可接受的精度范围内有效预测低速冲击损伤的大小、形状和位置,适用于复合材料结构的初步设计和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信