Orbifold splice quotients and log covers of surface pairs

IF 0.4 Q4 MATHEMATICS
W. Neumann, J. Wahl
{"title":"Orbifold splice quotients and log covers of surface pairs","authors":"W. Neumann, J. Wahl","doi":"10.5427/jsing.2021.23i","DOIUrl":null,"url":null,"abstract":"A three-dimensional orbifold $(\\Sigma, \\gamma_i, n_i)$, where $\\Sigma$ is a rational homology sphere, has a universal abelian orbifold covering, whose covering group is the first orbifold homology. A singular pair $(X,C)$, where $X$ is a normal surface singularity with $\\mathbb Q$HS link and $C$ is a Weil divisor, gives rise on its boundary to an orbifold. One studies the preceding orbifold notions in the algebro-geometric setting, in particular defining the universal abelian log cover of a pair. A first key theorem computes the orbifold homology from an appropriate resolution of the pair. In analogy with the case where $C$ is empty and one considers the universal abelian cover, under certain conditions on a resolution graph one can construct pairs and their universal abelian log covers. Such pairs are called orbifold splice quotients.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2021.23i","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A three-dimensional orbifold $(\Sigma, \gamma_i, n_i)$, where $\Sigma$ is a rational homology sphere, has a universal abelian orbifold covering, whose covering group is the first orbifold homology. A singular pair $(X,C)$, where $X$ is a normal surface singularity with $\mathbb Q$HS link and $C$ is a Weil divisor, gives rise on its boundary to an orbifold. One studies the preceding orbifold notions in the algebro-geometric setting, in particular defining the universal abelian log cover of a pair. A first key theorem computes the orbifold homology from an appropriate resolution of the pair. In analogy with the case where $C$ is empty and one considers the universal abelian cover, under certain conditions on a resolution graph one can construct pairs and their universal abelian log covers. Such pairs are called orbifold splice quotients.
曲面对的轨道拼接商和对数覆盖
三维轨道轨道$(\Sigma, \gamma_i, n_i)$,其中$\Sigma$是一个有理同调球,具有一个普遍的阿贝尔轨道覆盖,其覆盖群为第一轨道同调。一个奇异对$(X,C)$,其中$X$是具有$\mathbb Q$ HS链的法向表面奇点,$C$是韦尔除数,在其边界上产生一个轨道。在代数-几何环境中研究了前面的轨道概念,特别是定义了对的全称阿贝尔对数覆盖。第一个关键定理从对的适当分辨率计算轨道同调。与$C$为空并考虑普遍阿贝尔覆盖的情况类似,在一定条件下,可以在分辨率图上构造对及其普遍阿贝尔对数覆盖。这样的对被称为轨道拼接商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信