Triassico: A Sphere Positioning System for Surface Studies with IBA Techniques

Cristiano L. Fontana , Barney L. Doyle
{"title":"Triassico: A Sphere Positioning System for Surface Studies with IBA Techniques","authors":"Cristiano L. Fontana ,&nbsp;Barney L. Doyle","doi":"10.1016/j.phpro.2017.09.013","DOIUrl":null,"url":null,"abstract":"<div><p>We propose here a novel device, called the Triassico, to microscopically study the entire surface of millimeter-sized spheres. The sphere dimensions can be as small as 1<!--> <!-->mm, and the upper limit defined only by the power and by the mechanical characteristics of the motors used. Three motorized driving rods are arranged so an equilateral triangle is formed by the rod's axes, on such a triangle the sphere sits. Movement is achieved by rotating the rods with precise relative speeds and by exploiting the friction between the sphere and the rods surfaces. The sphere can be held in place by gravity or by an opposing trio of rods. By rotating the rods with specific relative angular velocities, a net torque can be exerted on the sphere which then rotates. No repositioning of the sphere or of the motors is needed to cover the full surface with the investigating tools. An algorithm was developed to position the sphere at any arbitrary polar and azimuthal angle. The algorithm minimizes the number of rotations needed by the rods, in order to efficiently select a particular position on the sphere surface. A prototype Triassico was developed for the National Ignition Facility, of the Lawrence Livermore National Laboratory (Livermore, California, USA), as a sphere manipulation apparatus for ion microbeam analysis at Sandia National Laboratories (Albuquerque, NM, USA) of Xe-doped DT inertial confinement fusion fuel spheres. Other applications span from samples orientation, ball bearing manufacturing, or jewelry.</p></div>","PeriodicalId":20407,"journal":{"name":"Physics Procedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phpro.2017.09.013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875389217301724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose here a novel device, called the Triassico, to microscopically study the entire surface of millimeter-sized spheres. The sphere dimensions can be as small as 1 mm, and the upper limit defined only by the power and by the mechanical characteristics of the motors used. Three motorized driving rods are arranged so an equilateral triangle is formed by the rod's axes, on such a triangle the sphere sits. Movement is achieved by rotating the rods with precise relative speeds and by exploiting the friction between the sphere and the rods surfaces. The sphere can be held in place by gravity or by an opposing trio of rods. By rotating the rods with specific relative angular velocities, a net torque can be exerted on the sphere which then rotates. No repositioning of the sphere or of the motors is needed to cover the full surface with the investigating tools. An algorithm was developed to position the sphere at any arbitrary polar and azimuthal angle. The algorithm minimizes the number of rotations needed by the rods, in order to efficiently select a particular position on the sphere surface. A prototype Triassico was developed for the National Ignition Facility, of the Lawrence Livermore National Laboratory (Livermore, California, USA), as a sphere manipulation apparatus for ion microbeam analysis at Sandia National Laboratories (Albuquerque, NM, USA) of Xe-doped DT inertial confinement fusion fuel spheres. Other applications span from samples orientation, ball bearing manufacturing, or jewelry.

三叠纪:用IBA技术进行表面研究的球面定位系统
我们在这里提出了一种新的装置,称为Triassico,用于微观研究毫米大小的球体的整个表面。球体尺寸可以小到1毫米,其上限仅由功率和所用电机的机械特性决定。三根电动驱动杆被布置成一个等边三角形,由杆的轴线组成,球体位于等边三角形上。运动是通过以精确的相对速度旋转杆和利用球体和杆表面之间的摩擦来实现的。球体可以通过重力或相反的三根杆固定在原地。通过以特定的相对角速度旋转杆,可以对球体施加净扭矩,然后球体旋转。不需要重新定位球体或马达,就可以用调查工具覆盖整个表面。提出了一种以任意极角和方位角对球体进行定位的算法。该算法最大限度地减少了杆所需的旋转次数,以便有效地选择球面上的特定位置。Triassico原型是为Lawrence Livermore国家实验室(Livermore, California, USA)的国家点火装置开发的,作为桑迪亚国家实验室(Albuquerque, NM, USA)的离子微束分析的球体操纵装置。其他应用范围从样品定位,滚珠轴承制造,或珠宝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信